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The classification rules induced by machine learning systems are judged by two criteria:
their classification accuracy on an independent test set (henceforth "accuracy"), and their
complexity. The relationship between these two criteria is, of course, of keen interest to
the machine learning community.

There are in the literature some indications that very simple rules may achieve
surprisingly high accuracy on many datasets. For example, Rendell occasionally remarks
that many real world datasets have "few peaks (often just one)" and so are "easy to learn"
(Rendell & Seshu, 1990, p.256). Similarly, Shavlik et al. (1991) report that, with certain
qualifications, "the accuracy of the perceptron is hardly distinguishable from the more
complicated learning algorithms" (p.134). Further evidence is provided by studies of
pruning methods (e.g. Buntine & Niblett, 1992; Clark & Niblett, 1989; Mingers, 1989),
where accuracy is rarely seen to decrease as pruning becomes more severe (for example,
see Table 1)1. This is so even when rules are pruned to the extreme, as happened with the
"Err-comp" pruning method in Mingers (1989). This method produced the most accurate
decision trees, and in four of the five domains studied these trees had only 2 or 3 leaves
(Mingers, 1989, pp. 238-239). Such small trees cannot test more than one or two
attributes. The most compelling initial indication that very simple rules often perform
well occurs in (Weiss et al., 1990). In 4 of the 5 datasets studied, classification rules
involving 2 or fewer attributes outperformed more complex rules.

This paper reports the results of experiments measuring the performance of very simple
rules on the datasets commonly used in machine learning research. The specific kind of
rules examined in this paper, called "1−rules", are rules that classify an object on the
basis of a single attribute (i.e. they are 1-level decision trees). Section 2 describes a
system, called 1R, whose input is a set of training examples and whose output is a 1−rule.
In an experimental comparison involving 16 commonly used datasets, 1R’s rules are only
a few percentage points less accurate, on most of the datasets, than the decision trees
produced by C4 (Quinlan, 1986). Section 3 examines possible improvements to 1R’s
criterion for selecting rules. It defines an upper bound, called 1R*, on the accuracy that
such improvements can produce. 1R* turns out to be very similar to the accuracy of C4’s
decision trees. This result has two implications. First, it indicates that simple
modifications to 1R might produce a system competitive with C4, although more
fundamental modifications are required in order to outperform C4. Second, this result
suggests that it may be possible to use the performance of 1−rules to predict the
performance of the more complex hypotheses produced by standard learning systems.

1 conditions under which pruning leads to a decrease in accuracy hav e been investigated by Schaffer
(1992; in press) and Fisher & Schlimmer (1988).
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TABLE 1. Results of a typical experimental study (Buntine & Niblett, 1992). For
each dataset the error rates of 4 systems are sorted in increasing order. Only 3 entries
violate the rule that error rate increases as complexity (leaf count) increases: these are
marked with an asterisk.

Dataset Error Rates Corresponding Leaf Counts
BC 27.2 28.5 28.7 29.7 6.0 9.3 10.2 25.4
GL 39.6 40.5 50.6 53.2 8.1 8.5 8.9 21.8
HY 0.95 1.01 1.27 7.44 4.8 5.0 5.8 34.0
IR 4.9 5.0 5.5 14.2 3.5 3.5 3.4* 12.1
LY 24.0 24.3 24.4 32.3 7.5 7.7 8.2 15.5
MU 1.44 1.44 7.31 8.77 12.4 12.4 23.3 48.7
VO 4.5 4.6 11.8 15.6 5.1 5.2 12.4 22.9
V1 12.8 13.0 15.1 15.6 8.9 9.4 13.0 22.9
led 32.9 33.2 33.8 38.2 13.0 13.1 13.3 19.4
pole 15.0 15.4 15.5 26.4 5.4 5.7 5.8 22.8

tumor 60.9 61.6 62.7 67.9 19.6 17.6* 22.5 32.8
xd6 22.06 22.14 22.17 31.86 14.8 14.9 14.8* 20.1

Section 4 defines a practical prediction system based on 1−rule accuracy, compares its
predictions to the accuracies of all learning systems reported in the literature, and
discusses its uses. Section 5 considers the practical significance of these results, and
sections 6 and 7 discuss the implications of the results for machine learning applications
and research.

1. 1R — a program that learns 1−rules from examples

Program 1R is ordinary in most respects. It ranks attributes according to error rate (on
the training set), as opposed to the entropy-based measures used in C4. It treats all
numerically-valued attributes as continuous and uses a straightforward method to divide
the range of values into several disjoint intervals. It handles missing values by treating
"missing" as a legitimate value. Appendix A giv es pseudocode for 1R.

In datasets with continuously-valued attributes there is a risk of overfitting. In dividing
the continuous range of values into a finite number of intervals it is tempting to make
each interval "pure", i.e. contain examples that are all of the same class. But just as
overfitting may result from deepening a decision tree until all the leaves are pure, so too
overfitting may result from subdividing an interval until all the subintervals are pure. To
avoid this, 1R requires all intervals (except the rightmost) to contain more than a
predefined number of examples in the same class. Based on the results in Holte et al.
(1989), the threshold was set at 6 for all datasets except for the datasets with fewest
examples (LA,SO) where the threshold was set at 3.
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A similar difficulty sometimes arises with nominal attributes. For example, consider a
dataset in which there is a nominal attribute that uniquely identifies each example, such as
the name of a patient in a medical dataset. Using this attribute, one can build a 1−rule
that classifies a given training set 100% correctly: needless to say, the rule will not
perform well on an independent test set. Although this problem is uncommon, it did arise
in two of the datasets in this study (GL,HO); the problematic attributes have been
manually deleted from the datasets.

1.1 The Datasets Used for Experimental Comparison.

Sixteen datasets were used to compare 1R with C4, a state-of-the-art learning algorithm.
Fourteen of the datasets were selected from the collection of datasets distributed by the
machine learning group at the University of California at Irvine (see Appendix B). The
selection includes many of the datasets most commonly used in machine learning
research. In addition to these fourteen datasets, the study includes a 2-class version of
GL (G2), and, following (Buntine & Niblett, 1992), a version of VO in which the "best"
attribute has been deleted (V1).

Table 2 gives a brief description of the datasets: note that they exhibit a wide variety of
characteristics. "Dataset" gives the two-letter name used to refer to the dataset. If there
are more than 2 classes in a dataset, the number of classes is indicated in parentheses

TABLE 2. Datasets used in the experiments.
(blank entries represent 0’s)

Baseline Missing Attributes ... number of distinct values
Accuracy Values cont 2 3 4 5 6 >6 TOTALDataset Size

BC 286 70.3 yes 3 2  1 1 2 9
CH 3196 52.2 no 35 1 36
GL (6) 214 35.5 no 9 9
G2 163 53.4 no 9 9
HD 303 54.5 yes 5 3 3 2  13
HE 155 79.4 yes 6 13 19
HO 368 63.0 yes 7 2 5 5 2 1  22
HY 3163 95.2 yes 7 18 25
IR (3) 150 33.3 no 4 4
LA 57 64.9 yes 8 3 5 16
LY (4) 141 56.7 no 2 9 2 5  18
MU 8124 51.8 yes 5 1 5 1 2  7 22
SE 3163 90.7 yes 7 18 25
SO (4) 47 36.2 no 13 3 4  1 35
VO 435 61.4 yes 16 16
V1 435 61.4 yes 15 15
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after the name. "Size" gives the total number of examples in the dataset. "Baseline
Accuracy" gives the percentage of examples in the most frequently occurring class in the
dataset. "Missing Values" indicates whether there are any examples in the dataset for
which the value of some attribute is unknown. The remaining columns indicate the
number of attributes having a given number of values. To be counted, in Table 2, as
continuous (column entitled "cont") an attribute must have more than 6 numerical values.
The total number of attributes in a dataset is given in the rightmost column. The total is
the sum of the other "Attributes" columns plus the number of attributes in the dataset for
which all examples have the same value. For example, in the SO dataset there are 13
attributes having 2 values, 3 attributes having 3 values, 4 attributes having values 4
values, and 1 attribute having more than 6 (non-numeric) values. This accounts for 21 of
the 35 attributes in the dataset: the other 14 attributes have the same value in every
example.

1.2 Experiment #1. Comparison of 1R and C4.

The version of C4 used in these experiments is C4.5 as distributed in May 1990. The
default settings of all parameters were used, except that windowing was turned off. The
accuracies of C4 and 1R on a dataset are computed in the usual way, namely:

1. randomly split the dataset into two parts, a training set (2/3 of the dataset) and a
test set.

2. Using the training set alone, generate a rule.
3. Measure the accuracy of the rule on the test set.
4. Repeat 1-3 25 times and average the results.

The results of this experiment are given in Table 3.

TABLE 3. Results of Experiment #1 — Classification Accuracy.
1R — average accuracy on the test set of the 1−rule produced by 1R.
C4 — average accuracy on the test set of the pruned tree produced by C4

Dataset
BC CH GL G2 HD HE HO HY

1R 68.7 67.6 53.8 72.9 73.4 76.3 81.0 97.2
C4 72.0 99.2 63.2 74.3 73.6 81.2 83.6 99.1

Dataset
IR LA LY MU SE SO VO V1

1R 93.5 71.5 70.7 98.4 95.0 81.0 95.2 86.8
C4 93.8 77.2 77.5 100.0 97.7 97.5 95.6 89.4
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1.3 Discussion of Experiment #1.

On average 1R’s accuracy is 5.7 percentage points lower than C4’s. However, this
av erage is quite misleading: on 12 of the 16 datasets, the difference between 1R’s
accuracy and C4’s is less than the average. This skewness is caused by the two datasets
(CH,SO) on which 1R’s accuracy is extremely poor compared to C4’s. On the other 14
datasets, 1R’s accuracy is an average of 3.1 percentage points lower than C4’s. On half
the datasets, 1R’s accuracy is within 2.6 percentage points of C4’s. To summarize these
results in general terms, one would say that on most of the datasets studied 1R’s accuracy
is about 3 percentage points lower than C4’s.

These results raise two related questions:
(1) why was C4’s accuracy not much greater than 1R’s on most of the datasets ?
(2) is there anything special about the CH and SO datasets that caused 1R to perform so

poorly ?

Considering question (1), there is no evidence that C4 missed opportunities to exploit
additional complexity in order to improve its accuracy: C4’s pruned trees were the same
accuracy as its unpruned ones (not shown). It is possible that C4 is overfitting, i.e., that
slightly less complex decision trees might have been more accurate, but this possibility
has been explored only partially. Experiments were run in which C4 was forced to build
1−rules. These 1−rules were never more accurate than the pruned trees C4 would
normally have produced: C4 is therefore correct in not pruning to the extreme. In fact, a
survey of the literature reveals that C4’s performance on these datasets is better than most
learning systems (see Appendix C for details and section 4 for a discussion of this
survey).

If the answer to question (1) lies not in the C4 algorithm, it must lie in the datasets
themselves. It may simply be a fact that on these particular datasets 1−rules are almost as
accurate as more complex rules. For example, on 2 datasets (BC,HE), few learning
systems have succeeded in finding rules of any kind whose accuracy exceeds the baseline
accuracy by more than 2 percentage points (see Appendix C).2 On a few datasets (IR, for
example) C4 prunes its decision tree almost to a 1−rule, a clear indication that, on these
datasets, additional complexity does not improve accuracy. Section 6 examines in detail
the complexity of C4’s rules.

Turning to question (2), there is a characteristic of the CH and SO datasets that is a
potential source of difficulty for a 1−rule learner. In these datasets there is only one
attribute having more values than there are classes. In CH there are 2 classes, and there is
one attribute having 3 values, and 35 attributes having 2 values. In SO there are 4 classes,
and there is one attribute having 7 values, 4 attributes having 4 values, and 30 attributes
having fewer than 4 values. By contrast, in almost all the other datasets there are
continuous attributes (which can be divided into as many intervals as necessary) or
several attributes having more values than there are classes.

2 Clark & Boswell (1991) offers some discussion of this phenomenon.
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To see why this characteristic can cause 1−rules to have unusually low accuracies,
consider an extreme example — the soybean dataset used in Michalski & Chilausky
(1980). In this dataset there are 15 classes, and there is one attribute having 10 values,3

one attribute having 7 values, and 33 other attributes having 5 or fewer values. Assuming
the attribute with 10 values perfectly separates the examples in the 10 largest classes, a
1−rule based on this attribute would achieve 86% accuracy. This is 11 percentage points
lower than the accuracy of the complex rules reported in Michalski & Chilausky (1980).
If this attribute turns out to be a poor classifier, the next best accuracy possible by a
1−rule is 76%, which happens only if the 7-valued attribute perfectly separates the
examples of the 7 largest classes. The accuracy of 1−rules based on 5-valued attributes is
66% or less on this dataset. Of course, more complex rules can separate the examples in
all of the classes, and one would expect them to clearly outperform 1−rules on datasets
such as this.

This characteristic is thus an indication that 1−rules might perform poorly. Howev er, one
must not conclude that 1−rules will always perform poorly on datasets having this
characteristic: VO and V1 provide examples to the contrary. In fact, on half the datasets,
the number of leaves in 1R’s rules is within 1 of the number of classes, as the following
table shows.

BC CH GL G2 HD HE HO HY IR LA LY MU SE SO VO V1
# leaves 7  2 4 4  4 3 3  5 3 4  3 9 5 4 3 3
# classes 2 2 6 2 2  2  2 2 3 2 4  2 2 4  2 2

The numbers in this table include the leaf for "missing" providing it is non-empty. This is
the reason that there are 3 leaves for the VO dataset even though all the attributes have 2
values. In the LY dataset two of the four classes have very few examples, so relatively
high accuracy can be achieved with fewer leaves than classes.

If the poor performance of 1R on CH and SO is to be explained as a consequence of the
datasets having only one attribute with more values than there are classes, it is then
necessary to address the question, "why did 1R perform well on several datasets also
having this property ?". The answer to this question, like the answer to question (1), may
be that it is simply a fact about these particular datasets that classes and the values of
some attributes are almost in 1-1 correspondence.

3 In the version of this dataset in the Irvine collection, this attribute has only 4 values.
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3. An Upper Bound on Improvements to 1R’s Selection Criterion

Given a dataset, 1R generates its output, a 1−rule, in 2 steps. First it constructs a
relatively small set of candidate rules (one for each attribute) and then it selects one of
these rules. This 2-step pattern is typical of many learning systems. For example, C4
consists of two similar steps: first it constructs a large decision tree, and then, in the
pruning step, it selects one of the subtrees of the tree constructed in the first step.

In any such 2-step system it is straightforward to compute an upper bound on the
accuracy that can be achieved by optimizing the selection step. This is done by simply
bypassing the selection step altogether and measuring the accuracy (on the test set) of all
the rules available for selection. The maximum of these accuracies is the accuracy that
would be achieved by the optimal selection method. Of course, in practice one is
constrained to use selection methods that do not have access to the final test set, so it may
not be possible to achieve the optimal accuracy. Thus, the optimal accuracy is an upper
bound on the accuracy that could be achieved by improving the selection step of the
system being studied.

There are at least two important uses of an upper bound computed in this way. First, if
the system’s current performance is close to the upper bound on all available datasets,
then it will be impossible to experimentally detect improvements to the selection step.
For example, before doing a large-scale study of various pruning methods, such as
(Mingers,1989), it would have been useful to compute the upper bound on accuracy
achievable by any pruning method. Such a study may have indicated that there was little
room for variation amongst all possible pruning methods on the datasets being
considered.

The second important use of this upper bound is in comparing two systems. If the upper
bound on accuracy of one system, S1, is less than the actual accuracy of another system,
S2, then the only variations of S1 that can possibly outperform S2 are ones whose first
step is different than S1’s. This is the use made of the upper bound in this section: the
following experiment was undertaken to determine if modifications to 1R’s selection step
could possibly result in 1R equalling or exceeding C4’s performance.

3.1 Experiment #2.

An upper bound on the accuracy achievable by optimizing 1R’s selection step is
computed as follows.

1. randomly split the dataset into two parts, a training set and a test set.
2. Using the training set alone, generate a set of rules.
3. Measure the highest accuracy of all the generated rules on the test set.
4. repeat 1-3 25 times and average the results.

The same training/testing sets were used as in experiment #1. The results of this
experiment are given in table 4. For ease of reference, the upper bound is given the name
1R*.
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TABLE 4. Results of Experiment #2 — Classification Accuracy.
1R, C4 — as in Table 3.
1R* — the highest accuracy on the test set of all the rules constructed by 1R

with greater than baseline accuracy of the training set. This is an up-
per bound on the accuracy achievable by optimizing 1R’s selection
step.

Dataset
BC CH GL G2 HD HE HO HY

1R 68.7 67.6 53.8 72.9 73.4 76.3 81.0 97.2
1R* 72.5 69.2 56.4 77.0 78.0 85.1 81.2 97.2
C4 72.0 99.2 63.2 74.3 73.6 81.2 83.6 99.1

Dataset
IR LA LY MU SE SO VO V1

1R 93.5 71.5 70.7 98.4 95.0 81.0 95.2 86.8
1R* 95.9 87.4 77.3 98.4 95.0 87.0 95.2 87.9
C4 93.8 77.2 77.5 100.0 97.7 97.5 95.6 89.4

3.2 Discussion of Experiment #2.

1R’s accuracy cannot exceed 1R* because the rule selected by 1R is in the set of rules
whose accuracies are used to compute 1R*. On average, 1R’s accuracy is 3.6 percentage
points lower than 1R*. On 5 datasets the difference in accuracies is negligible and on a
further 5 datasets the difference is not large (3.8 percentage points or less). Bearing in
mind that 1R* is a rather optimistic upper bound, one may conclude that changes to 1R’s
selection criterion will produce only modest improvement in accuracy on most of the
datasets in this study.

The difference between C4’s accuracy and 1R* is not particularly large on most of the
datasets in this study. On two-thirds (10) of the datasets the difference is 2.7 percentage
points or less. On average, 1R* is 2.1 percentage points less than C4’s accuracy, and only
0.28 less if the CH dataset is ignored. On half of the datasets, 1R* is higher than or
negligibly lower than C4’s accuracy. For these reasons, one may conclude that the most
accurate 1-rule constructed by 1R is, on almost all the datasets studied, about the same
accuracy as C4’s decision tree.

This result has two main consequences. First, it shows that the accuracy of 1−rules can
be used to predict the accuracy of C4’s decision trees. Section 4 develops a fast predictor,
based on 1−rule accuracy, and discusses several different uses of such a predictor.
Secondly, this result shows that 1R is failing to select the most accurate of the 1-rules it is
constructng. With an improved selection criterion 1R might be competitive, as a learning
system, with C4 (except on datasets such as CH). On the other hand, it is certain that
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however the selection criterion is improved, 1R will never significantly outperform C4. If
C4 is to be surpassed on most datasets by a 1−rule learning system, changes of a more
fundamental nature are required.

4. Using 1−rules to predict the accuracy of complex rules.

An ideal predictor would be a system that made a single, rapid pass over the given dataset
and produced an accuracy comparable to C4’s on the dataset. A natural candidate is 1R
itself, using the whole dataset for both training and testing. 1Rw is defined to be the
accuracy computed in this way:

1. Run program 1R with the whole dataset as a training set to generate a rule (called
the W-rule).

2. 1Rw is the accuracy of the W-rule on the whole dataset.

Table 5 shows the value of 1Rw for the datasets in this study.

A careful comparison of 1Rw with C4’s accuracy inv olves two steps. The first step is to
use a statistical test (a two-tailed t-test) to evaluate the difference in accuracy on each
individual dataset. This test computes the probability that the observed difference
between 1Rw and C4’s accuracy is due to sampling: "confidence" is 1 minus this
probability. Unless confidence is very high, one may conclude that there is no significant
difference between 1Rw and C4’s accuracy on the dataset. If confidence is very high, one
proceeds with the second step of the comparison in which the magnitude of the
differences is considered. This step is necessary because significance tests are not
directly concerned with magnitudes: very small differences can be highly significant. For

TABLE 5. 1Rw measured on the datasets.
C4 — as in Table 4.
1Rw — highest accuracy of the 1−rules produced when the whole dataset is

used by 1R for both training and testing.

Dataset
BC CH GL G2 HD HE HO HY

C4 72.0 99.2 63.2 74.3 73.6 81.2 83.6 99.1
1Rw 72.7 68.3 62.2 78.5 76.6 84.5 81.5 98.0

Dataset
IR LA LY MU SE SO VO V1

C4 93.8 77.2 77.5 100.0 97.7 97.5 95.6 89.4
1Rw 96.0 84.2 75.7 98.5 95.0 87.2 95.6 87.4
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example, the difference between C4’s accuracy and 1Rw on the MU dataset, although it is
one of the smallest in magnitude, is much more significant than the difference on any
other dataset.

The results of the t-tests are as follows (see appendix D for details). The differences
between C4’s accuracy and 1Rw on the BC, GL, and VO datasets are not significant. The
difference on the LY dataset is significant with 95% confidence. The differences on all
other datasets are significant with greater than 99% confidence, i.e., the probability of
observing differences of these magnitudes, if C4’s accuracy is in fact equal to 1Rw, is less
than .01.

The difference between C4’s accuracy and 1Rw, although statistically significant, is not
particularly large on most of the datasets in this study. On three quarters of the datasets
the absolute difference is 3.3 percentage points or less. On average, 1Rw is 1.9
percentage points less than C4’s accuracy, and only 0.007 less if the CH dataset is
ignored. For these reasons, one may conclude that 1Rw is a good predictor of C4’s
accuracy on almost all the datasets studied.

4.1 1Rw as a Predictor of Accuracy of Other Machine Learning Systems.

In order to evaluate 1Rw as a predictor of the accuracy of machine learning systems in
general, the machine learning literature was scanned for results on the datasets used in
this study4. Appendix C lists the results that were found in ths survey. The G2, HO, and
SO datasets do not appear in Appendix C because there are no reported results
concerning them. A detailed comparison of the results for each dataset is impossible,
because the results were obtained under different experimental conditions. Nevertheless,
a general assessment of 1Rw as a predictor of accuracy can be made by comparing it on
each dataset to the median of the accuracies for that dataset reported in the literature.
1Rw is very highly correlated with the medians, having a correlation coefficient (r) of
99% (if CH is ignored, 77% if CH is included). By fitting a line to this median-vs-1Rw
data, one obtains a simple means of predicting medians given 1Rw. If this is done, the
predicted value differs from the actual value by only 1.3 percentage points on average (if
CH is ignored).

4 It is not always possible to be certain that a dataset described in the literature is identical to the
dataset with the same name on which 1Rw was measured. The survey includes all results for which there is
no evidence that the datasets differ.
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4.2 Uses of 1Rw

Predictors of accuracy, such 1Rw, or of relative accuracy, such as Fisher’s measure of
"attribute dependence" (Fisher (1987); Fisher & Schlimmer (1988)) are informative
measurements to make on a dataset: they can be used in a variety of ways.

The most obvious use of 1Rw is as a benchmark accuracy for learning systems, i.e., as a
standard against which to compare new results. The current benchmark is baseline
accuracy, the percentage of examples in a dataset in the most frequently occurring class.
For most datasets baseline accuracy is relatively low, and therefore not a useful
benchmark. 1Rw is only slightly more expensive to compute and it is often a very
challenging benchmark.

Alternatively, one can measure 1Rw before applying a learning algorithm to a dataset, in
order to obtain a quick estimate of the accuracy that learned rules will have. This
estimate could be compared to the accuracy required in the given circumstances. An
estimated accuracy that is lower than the required accuracy is an indication that learning
might not produce a rule of the required accuracy. In this case, the dataset should be
"improved" by collecting or creating additional attributes for each example (e.g. compare
V1 and VO), or reducing the number of classes (e.g. compare GL and G2), or in some
other way changing the representation. In constructive induction systems (Rendell &
Seshu, 1990) 1Rw is a natural method for evaluating new attributes, or even whole new
representations (Saxena, 1989).

5. The Practical Significance of the Experimental Results

The preceding experiments show that most of the examples in most of the datasets
studied can be classified correctly by very simple rules. The practical significance of this
observation hinges on whether or not the procedures and datasets that have been used in
the experiments — which are the standard procedures and datasets in machine learning
— faithfully reflect the conditions that arise in practice. Of particular concern are the
datasets. One does not intuitively expect "real" classification problems to be solved by
very simple rules. Consequently, one may doubt if the datasets used in this study are
"representative" of the datasets that actually arise in practice.

It is true that many of the classification problems that arise in practice do not have simple
solutions. Rendell & Seshu (1990) call such problems "hard". The best known hard
classification problem is protein structure prediction, in which the secondary structure of
a protein must be predicted given a  description of the protein as an amino acid sequence.
Another well-known hard problem is the classification of a chess position as won or lost,
given a description of the position in terms of "low lev el" features. The machine learning
techniques developed for "easy" classification problems are, by definition, of limited use
for hard classification problems: the development of techniques appropriate to hard
problems is a challenging, and relatively new branch of machine learning.

However, the fact that some real problems are hard does not imply that all real problems
are hard. A dataset faithfully represents a real problem providing it satisfies two
conditions. First, the dataset must have been drawn from a real-life domain, as opposed
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to having been constructed artificially. All the datasets in this study satisfy this
requirement. Secondly, the particular examples in the dataset and the attributes used to
describe them, must be typical of the examples and attributes that naturally arise in the
domain. That is, the datasets must not have been specially "engineered" by the machine
learning community to make them "easy". The CH dataset does not satisfy this
condition: its attributes were engineered explicitly for ID3 by a chess expert working with
a version of ID3 built specially for this purpose (Shapiro, 1987, pp.71-73). Indeed, the
development of CH was a case study of one particular technique ("structured induction")
for transforming a hard classification problem into an easy one.

Thus, the practical significance of the present study, and other studies based on these
datasets, reduces to the question: are the examples and attributes in these datasets natural
or have they been specially engineered by the machine community learning (as in CH) in
order to make induction easy ? The evidence pertaining to this question varies from
dataset to dataset.

For 6 datasets (HY,LA,MU,SE,VO,V1) the process by which the dataset was created
from the raw data is sufficiently well documented5 that it can confidently be asserted that
these datasets faithfully represent real problems. The only instance of data adaptation
that is mentioned is in connection with the congressional voting data (VO, V1). In the
original form, there were 9 possible positions a congressman could take tow ards a given
bill. In the dataset, some of these possibilities are combined so that there are only three
possible values for each attribute. The grouping is a natural one, and not one specially
contrived to improve the results of learning.

For 3 datasets (BC,HO,LY), the creation of the dataset involved some "cleaning" of the
raw data. The nature of this "cleaning" is not described in detail, but there is no
suggestion that that it involves anything other than the normal activities involved in
rendering a heterogeneous collection of records into a uniform structure suitable for
machine learning experiments.6 Thus there is no reason to doubt that these datasets
faithfully represent real classification problems.

The preceding datasets are adaptations, involving minimal changes, of data that had
already been collected for a purpose other than machine learning. The SO dataset is
different, in that it was created for the purpose of machine learning. The account given of
the creation of this dataset (pp.134-136, Michalski & Chilausky, 1980)) mentions two
criteria for selecting attributes: (1) each attribute must be measurable by a layman, and
(2) the dataset must include the attributes used in the expert system that was developed
for comparison with the induced classification rules. The account suggests that the
development of the expert system involved iterative refinement. Although this account
does not explicitly comment on the extent to which the attributes evolved during the
expert system development, it not unreasonable to suppose that the attributes in this
dataset have been engineered, or at least selected, to ensure that accurate classification is

5 HY, SE: Quinlan et al. (1986). LA: Bergadano et al. (1992). MU, VO (V1): Schlimmer (1987).
6 HO: McLeish & Cecile (1990). BC, LY: Cestnik et al. (1987). For LY, some grouping of values

was done, as in VO.
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possible with relatively simple rules.

On the creation of the remaining datasets (GL, G2, HD, HE, IR) there is no published
information.

In summary, only 2 of the datasets in this study may reasonably be judged to have been
specially engineered by the machine learning community to be "easy". Ironically, it is
these two datasets on which 1R performs most poorly. 9 of the datasets are known to be,
or are very likely to be, representative of problems that naturally arise in practice.
Although these datasets do not represent the entire range of "real" problems (e.g. they do
not represent "hard" problems), the number and diversity of the datasets indicates that
they represent a class of problems that often arises. The next two sections examine the
role of very simple classification rules in machine learning applications and research
within this class of problems.

6. Accuracy versus Complexity in 1R and C4

The preceding sections have established that there are a significant number of realistic
datasets on which 1−rules are only slightly less accurate (3.1 percentage points) than the
complex rules created by C4 and other machine learning systems. In order to get insight
into the tradeoff between accuracy and complexity, the complexity of C4’s trees was
measured in experiment #1. The results are given in the following table.

BC CH GL G2 HD HE HO HY IR LA LY MU SE SO VO V1
mx 4 13 12 9 7  7  4 7 4 3 5  6  9 3 5 7
dc 0.9 4.5 5.1 3.7 2.7 2.2 1.6 1.2 1.9 1.4 2.2 1.6 1.5 2.0 1.4 2.2

%>2 2 59 87 80 58 26 18 6 24 5 36 8 13 18 6 30

The "mx" row giv es the maximum depth of the pruned trees built by C4 on each dataset.
Maximum depth corresponds to the number of attributes measured to classify an example
in the worst case. On average, the maximum depth of C4’s trees is 6.6, compared to 1 for
1−rules. Maximum depth is usually regarded as an underestimate of the true complexity
of a decision tree because it does not take into account the complexity due to the tree’s
shape. For this reason, researchers normally define complexity as the number of leaves or
nodes in a tree. By this measure, C4’s trees are much more complex than 1−rules.

Maximum depth, or number of leaves, are measures of the "static complexity" of a
decision tree. However, considerations such as the speed of classification, or cost of
measuring the attributes used during classification (Tan & Schlimmer, 1990), are dynamic
properties of a tree which are not accurately reflected by static complexity. The dynamic
complexity of a rule can be defined as the average number of attributes measured in
classifying an example. The dynamic complexity of C4’s pruned trees is given in the
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"dc" row of the table.7 On datasets where C4’s trees involve continuous attributes (GL,
G2, and IR, for example), dynamic complexity is artificially high because C4 transforms
these into binary attributes instead of N-ary attributes (N > 2). C4’s dynamic complexity,
av eraged over the 16 datasets, is 2.3, compared to 1 for 1−rules. Furthermore, there is
considerable variance in the number of attributes measured by C4’s decision trees: on
some datasets C4’s dynamic complexity is considerably greater than 2.3, and in most
datasets there are some examples, sometimes many, for which C4’s decision trees
measure more than 2.3 attributes. To illustrate the latter kind of variation, the third row in
the table ("%>2") indicates the percentage of examples in each dataset for which
classification by C4’s decision trees involves measuring 3 or more attributes.

Thus in 1R and C4 there is a perfect symmetry in the relationship between accuracy and
dynamic complexity. 1R’s rules are always very simple, usually a little less accurate, and
occasionally much less accurate. C4’s rules are more accurate, a little less simple on
av erage, and occasionally much less simple.

These differences between 1R and C4 have practical implications. In practice, different
applications have different demands in terms of accuracy and static and dynamic
complexity. Depending on these demands, either 1R or C4 will be the more appropriate
learning system for the application. For example, C4 is appropriate for applications that
demand the highest possible accuracy, reg ardless of complexity8. And, 1R is appropriate
for applications in which static complexity is of paramount importance: for example,
applications in which the classification process is required to be comprehensible to the
user. In applications where simplicity and accuracy are equally important, the symmetry
between 1R and C4 means that the two systems are equally appropriate.

7. The "Simplicity First" Research Methodology

One goal of machine learning research is to improve both the simplicity and accuracy of
the rules produced by machine learning systems. In pursuit of this goal, the research
community has historically followed a research methodology whose main premise is that
a learning system should search in very large hypothesis spaces containing, among other
things, very complex hypotheses. According to this "traditional" methodology, progress
in machine learning occurs as researchers invent better heuristics for navigating in these
spaces towards simple, accurate hypotheses.

The results of preceding sections do not lend support to the premise of the traditional
methodology. Complex hypotheses need not be considered for datasets in which most
examples can be classified correctly on the basis of 1 or 2 attributes. An alternative,
"simplicity first" methodology begins with the opposite premise: a learning system should
search in a relatively small space containing only simple hypotheses. Because the space
is small, navigating in it is not a major problem. In this methodology, progress occurs as

7 The dynamic complexity of the BC dataset is less than 1 because C4 occasionally produces a deci-
sion tree that consists of nothing but a leaf (all examples are classified the same without testing a single at-
tribute).

8 for example, the space shuttle application described in Catlett (1991a)
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researchers invent ways to expand the search space to include slightly more complex
hypotheses that rectify specific deficiencies.

The experiment with 1R* nicely illustrates how a researcher proceeds according to the
"simplicity first" methodology. That experiment analyzed the potential for improving 1R
by optimizing its selection criterion. The results showed that modifications to 1R’s
selection criterion would produce at best modest increases in accuracy. To achieve
greater increases it is necessary to change the set of rules that 1R "searches" during its
"construction" step. For example, 1R’s method for partitioning the values of continuous
attributes into a set of intervals does not consider all possible partitions. A method of
partitioning that considered different partitions might construct 1−rules that are more
accurate than any of the 1−rules constructed by the current version of 1R.9 More
fundamental changes might extend 1R’s search space to include slightly more complex
rules, such as rules that measure 2 attributes or linear trees.

The two methodologies have as their aim the same goal: improving both the accuracy and
the simplicity of the rules produced by machine learning systems. But they provide
different starting points, emphases, and styles of research towards this goal. The main
practical differences in the methodologies are the following.

(1) Systems designed using the "simplicity first" methodology are guaranteed to produce
rules that are near-optimal with respect to simplicity. If the accuracy of the rule is
unsatisfactory, then there does not exist a satisfactory simple rule, so to improve
accuracy one must increase the complexity of the rules being considered. By contrast,
systems designed using the traditional methodology may produce rules that are
significantly sub-optimal with respect to both simplicity and accuracy. For example,
on the VO dataset Buntine & Niblett (1992) report a learning system that produces a
decision tree having 12 leaves and an accuracy of 88.2%. This rule is neither accurate
nor simple.10 If this accuracy is unsatisfactory, there may exist a simpler rule that is
more accurate. Or there may not. In the traditional methodology one must simply
guess where to search for more accurate rules if an unsatisfactory rule is initially
produced.

(2) Analysis, such as formal learnability analysis, of simple hypothesis spaces and the
associated simple learning algorithms is easier than the corresponding analysis for
complex hypothesis spaces. Iba & Langley (1992) give an initial analysis of 1-rule
learning behaviour. In this regard, the "simplicity first" methodology for studying and
designing learning systems parallels the normal methodology in mathematics of
proceeding from simple, easily understood problems through progressively more
difficult ones, with the solutions to later problems building upon the results, or using
the methods, of the earlier ones. Because the methodologies are parallel, the theory
and practice of machine learning may progress together.

9 A recursive partitioning algorithm similar to Catlett’s (1991b) creates partitions that are different
than 1R’s, and no less accurate.

10 1R produces a rule having 3 leaves and an accuracy of 95.2%.
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(3) Simple hypothesis spaces are so much smaller that algorithms can be used which
would be impractical in a larger space. For example, in an acceptably short amount of
time PVM (Weiss et al., 1990) can search thoroughly (although not exhaustively)
through its relatively small hypothesis space. As a result, PVM is able to find rules of
maximal accuracy, at least for their length.11

(4) Finally, many of the same issues arise when using a simple hypothesis space as when
using a complex one. For example, Weiss et al. (1990) address the issues of accuracy-
estimation and partitioning continuous attributes into intervals. Other issues that arise
equally with simple and complex hypothesis spaces are: overfitting, tie-breaking
(choosing between rules that score equally well on the training data), and the handling
of small disjuncts and missing values. Such issues are more easily studied in the
smaller, simpler context, and the knowledge derived in this way is, for the most part,
transferable to the larger context.

As these differences illustrate, the "simplicity first" methodology is a promising
alternative to the existing methodology.

8. CONCLUSION

This paper presented the results of an investigation into the classification accuracy of very
simple rules ("1−rules", or 1-level decision trees): ones which classify examples on the
basis of a single attribute. A program, called 1R, that learns 1−rules from examples was
compared to C4 on 16 datasets commonly used in machine learning research.

The main result of comparing 1R and C4 is insight into the tradeoff between simplicity
and accuracy. 1R’s rules are only a little less accurate (3.1 percentage points) than C4’s
pruned decision trees on almost all of the datasets. C4’s trees are considerably larger in
size ("static complexity") than 1−rules, but not much larger in terms of the number of
attributes measured to classify the average example ("dynamic complexity").

The fact that, on many datasets, 1−rules are almost as accurate as more complex rules has
numerous implications for machine learning research and applications. The first
implication is that 1R can be used to predict the accuracy of the rules produced by more
sophisticated machine learning systems. In research, this prediction can be used as a
benchmark accuracy, giving a reasonable estimate of how one learning system would
compare with others. In applications, it can be used to determine if learning is likely to
achieve the required accuracy.

A more important implication is that simple-rule learning systems are often a viable
alternative to systems that learn more complex rules. If a complex rule is induced, its
additional complexity must be justified by its being correspondingly more accurate than a
simple rule. In research, this observation leads to an new research methodology that

11 On two datasets Weiss et al. (1990) searched exhaustively through all rules up to a certain length (2
in one case, 3 in the other). If longer, more accurate rules exist, no one has yet found them.
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differs from the traditional methodology in significant ways. In applications, the
accuracy and complexity demands of each particular application dictate the choice
between the two kinds of system.

The practical significance of this research was assessed by examining whether or not the
datasets used in this study are representative of datasets that arise in practice. It was
found that most of these datasets are typical of the data available in a commonly
occurring class of "real" classification problems. Very simple rules can be expected to
perform well on most datasets in this class.
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APPENDIX A. A brief description of the program 1R.

1R and 1R* are implemented in one program: they are identical except for about 2 lines
of code which, if executed, produces 1R*-output in addition to 1R-output (see step 5
below). The user sets a flag to select 1R or 1R*. The user also sets SMALL, the "small
disjunct" threshold (Holte et al., 1989).

Top-level pseudocode.

1. In the training set count the number of examples in class C having value V for attribute
A: store this information in a 3-d array, COUNT[C,V,A].

2. The default class is the one having the most examples in the training set. The accuracy
of the default class is the number of training examples in the default class divided by
the total number of training examples.

3. FOR EACH NUMERICAL ATTRIBUTE, A, create a nominal version of A by
defining a finite number of intervals of values. These intervals become the "values" of
the nominal version of A. For example, if A’s numerical values are partitioned into
three intervals, the nominal version of A will have three values "interval 1", "interval
2", and "interval 3". COUNT[C,V,A] reflects this transformation: COUNT[C,"interval
I",A] is the sum of COUNT[C,V,A] for all V in interval I.

definitions:
Class C is optimal for attribute A, value V, if it maximizes COUNT[C,V,A].
Class C is optimal for attribute A, interval I, if it maximizes

COUNT[C,"interval I",A].

Values are partitioned into intervals so that every interval satisfies the following
constraints:
(a) there is at least one class that is "optimal" for more than SMALL of the values in

the interval. This constraint does not apply to the rightmost interval.
(b) If V[I] is the smallest value for attribute A in the training set that is larger than the

values in interval I then there is no class C that is optimal both for V[I] and for
interval I.

4. FOR EACH ATTRIBUTE, A, (use the nominal version of numerical attributes):
(a) Construct a hypothesis involving attribute A by selecting, for each value V of A

(and also for "missing"), an optimal class for V. If sev eral classes are optimal for a
value, choose among them randomly.

(b) add the constructed hypothesis to a set called HYPOTHESES. This set will
ultimately contain one hypothesis for each attribute.

5. 1R: choose the rule from the set HYPOTHESES having the highest accuracy on the
training set (if there are several "best" rules, choose among them at random).

1R*: choose all the rules from HYPOTHESES having an accuracy on the training set
greater than the accuracy of the default class.
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APPENDIX B. Source of the Datasets Used in this Study.

All datasets are from the collection distributed by the University of California at Irvine
(current contact person: Pat Murphy (pmurphy@ics.uci.edu)). Except as noted below, I
used the datasets exactly as they are found in the April 1990 distribution.

Datasets BC and LY were originally collected at the University Medical Center, Institute
of Oncology, Ljubljana, Slovenia, by M. Soklic and M. Zwitter, and converted into easy-
to-use experimental material by Igor Kononenko, Faculty of Electrical Engineering,
Ljubljana University.

BC: breast-cancer/breast-cancer.data
CH: chess-end-games/king-rook-vs-king-pawn/kr-vs-kp.data
GL: glass/glass.data. First attribute deleted. This dataset is sometimes described as

having 7 classes, but there are no examples of class 4.
G2: GL with classes 1 and 3 combined and classes 4 through 7 deleted.
HD: heart-disease/cleve.mod. Last attribute deleted to give a 2-class problem.
HE: hepatitis/hepatitis.data
HO: undocumented/taylor/horse-colic.data + horse-colic.test

Attribute V24 is used as the class. Attributes V3, V25, V26, V27, V28 deleted.
HY: thyroid-disease/hypothyroid.data
IR: iris/iris.data
LA: labor-negotiations. The dataset in the April-1990 distribution was in an unusable

format. I obtained a usable version — which I believe is now in the UCI
collection — from the original source: Stan Matwin, University of Ottawa.

LY : lymphography/lymphography.data
MU: mushroom/agaricus-lepiota.data
SE: thyroid-disease/sick-euthyroid.data
SO: soybean/soybean-small.data
VO: voting-records/house-votes-84.data
V1: VO with the "physician-fee-freeze" attribute deleted.
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APPENDIX C. Survey of results for each dataset.

The results included in this survey were produced under a very wide variety of
experimental conditions and therefore it is impossible to compare them in any detailed
manner. Most of the results are averages over a number of runs, where each run involves
splitting the dataset into disjoint training and test sets and using the test set to estimate the
accuracy of the rule produced given the training set. But the number of runs varies
considerably, as does the ratio of the sizes of the training and test set, and different
methods of "randomly" splitting have sometimes been used (e.g. cross-validation,
stratified sampling, and unstratified sampling). Furthermore, it is virtually certain that
some papers reporting results on a dataset have used slightly different versions of the
dataset than others, it being common practice to make "small" changes to a dataset for the
purposes of a particular experiment.

Dataset BC
62.0, "B" (Schoenauer & Sebag, 1990)
62.0, Assistant (no pruning) (Clark & Niblett (1987,1989))
65.0, Bayes (Clark & Niblett (1987,1989))
65.1, CN2 (ordered,laplace) (Clark & Boswell, 1991)
65.3, nearest neighbour (Weiss & Kapouleas, 1989)
65.6, Bayes(second order) (Weiss & Kapouleas, 1989)
65.6, quadratic discriminant (Weiss & Kapouleas, 1989)
66.0, AQTT15 (Michalski, 1990)
66.3, ID unpruned (Peter Clark, personal communication)
66.8, CN2 ordered (Peter Clark, personal communication)
66.8, G-R, Min-err (Mingers, 1989)
66.9, C4 unpruned (Peter Clark, personal communication)
67.0, Assistant (no pruning) (Michalski, 1990)
67.4, Prob, Min-err (Mingers, 1989)
68.0, AQ11/15 (Tan & Eshelman, 1988)
68.0, AQ15 (Salzberg, 1991)
68.0, AQTT15 (biggest disjuncts) (Michalski, 1990)
68.0, AQTT15 (unique>1) (Michalski, 1990)
68.0, Assistant (pruning) (Clark & Niblett (1987,1989))
68.3, G-stat, Min-err (Mingers, 1989)
68.7, ========================================================= 1R ====
68.7, Marsh, Min-err (Mingers, 1989)
69.0, CN2 (ordered,entropy) (Clark & Boswell, 1991)
69.2, Gain Ratio (Lopez de Mantaras, 1991)
69.3, G-R, Critical (Mingers, 1989)
69.3, ID3 (Tan & Eshelman, 1988)
69.6, G-stat, Critical (Mingers, 1989)
69.7, G-R, Err-comp (Mingers, 1989)
70.0, Assistant (no pruning) (Cestnik et al., 1987))
70.3, ============================== BASELINE ACCURACY ================
70.4, random (Buntine & Niblett, 1992)
70.6, Distance (Lopez de Mantaras, 1991)
(continued next page)
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Dataset BC (continued)
70.8, G-R, reduce (Mingers, 1989)
71.0, CN2(99) (Clark & Niblett (1987,1989))
71.0, Prob, Critical (Mingers, 1989)
71.5, C4 pruned (Peter Clark, personal communication)
71.5, EACH without feature adjustment (Salzberg, 1991)
71.5, Info Gain (Buntine & Niblett, 1992)
71.5, Prob, Err-comp (Mingers, 1989)
71.5, neural net (Weiss & Kapouleas, 1989)
71.6, G-R, Pessim (Mingers, 1989)
71.6, linear discriminant (Weiss & Kapouleas, 1989)
71.8, Bayes (Weiss & Kapouleas, 1989)
71.9, Marsh, Pessim (Mingers, 1989)
71.9, Prob, Pessim (Mingers, 1989)
72.0, AQ15 (Michalski et al., 1986)
72.0, AQR (Clark & Niblett (1987,1989))
72.0, Assistant (pruning) (Michalski, 1990)
72.0, C4 (pruned) (this paper)
72.0, G-stat, Err-comp (Mingers, 1989)
72.1, C4 (Clark & Boswell, 1991)
72.3, GINI (Buntine & Niblett, 1992)
72.3, Marsh, Critical (Mingers, 1989)
72.3, Marsh, Err-comp (Mingers, 1989)
72.5, G-stat, Pessim (Mingers, 1989)
72.7, ========================================================= 1Rw ===
72.8, ========================================================= 1R* ===
72.8, Prob, Reduce (Mingers, 1989)
72.9, G-stat, Reduce (Mingers, 1989)
72.9, Marsh (Buntine & Niblett, 1992)
73.0, CN2 (unordered,laplace) (Clark & Boswell, 1991)
73.1, Marsh, Reduce (Mingers, 1989)
73.4, IWN(add-or) (Tan & Eshelman, 1988)
73.5, IWN(max-or) (Tan & Eshelman, 1988)
74.3, ID3 (pruned) (Buntine, 1989)
75.0, "C2" (Schoenauer & Sebag, 1990)
75.6, Bayes/N (Buntine, 1989)
76.1, Bayes (Buntine, 1989)
76.2, ID3 (averaged) (Buntine, 1989)
77.0, Assistant (pre-pruning) (Cestnik et al., 1987))
77.1, CART (Weiss & Kapouleas, 1989)
77.1, PVM (Weiss & Kapouleas, 1989)
77.6, EACH with feature adjustment (Salzberg, 1991)
78.0, "D3" (Schoenauer & Sebag, 1990)
78.0, Assistant (post-pruning) (Cestnik et al., 1987))
78.0, Bayes (Cestnik et al., 1987))
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Dataset CH
67.6, ========================================================= 1R ====
68.3, ========================================================= 1Rw ===
69.2, ========================================================= 1R* ===
85.4, Bayes (Buntine, 1989)
91.0, CN2 (Holte et al., 1989)
93.9, perceptron (Shavlik et al., 1991)
96.3, back propagation (Shavlik et al., 1991)
96.4, ID3 (pruned) (Buntine, 1989)
96.9, ID3 (unpruned) (Buntine, 1989)
97.0, ID3 (Shavlik et al., 1991)
99.2, C4 (pruned) (this paper)

Dataset GL
45.5, NTgrowth (de la Maza, 1991)
46.8, random (Buntine & Niblett, 1992)
48.0, Proto-TO (de la Maza, 1991)
49.4, Info Gain (Buntine & Niblett, 1992)
53.8, ========================================================= 1R ====
56.3, ========================================================= 1R* ===
59.5, Marsh (Buntine & Niblett, 1992)
60.0, GINI (Buntine & Niblett, 1992)
62.2, ========================================================= 1Rw ===
63.2, C4 (pruned) (this paper)
65.5, C4 (de la Maza, 1991)

Dataset HD
60.5, perceptron (Shavlik et al., 1991)
70.5, growth (Aha & Kibler, 1989)
71.1, K-nearest neighbour growth (K=3) (Aha & Kibler, 1989)
71.2, ID3 (Shavlik et al., 1991)
71.3, disjunctive spanning (Aha & Kibler, 1989)
71.4, growth (Kibler & Aha, 1988)
73.4, ========================================================== 1R ===
73.6, C4 (pruned) (this paper)
74.8, C4 (Kibler & Aha, 1988)
75.4, C4 (Aha & Kibler, 1989)
76.2, proximity (Aha & Kibler, 1989)
76.4, IRT (Jensen, 1992)
76.6, ========================================================= 1Rw ===
77.0, NTgrowth (Kibler & Aha, 1988)
77.9, NTgrowth (Aha & Kibler, 1989)
78.0, ========================================================= 1R* ===
78.7, NT disjunctive spanning (Aha & Kibler, 1989)
79.2, K-nearest neighbour (K=3) (Aha & Kibler, 1989)
79.4, NT K-nearest neighbour growth (K=3) (Aha & Kibler, 1989)
80.6, back propagation (Shavlik et al., 1991)
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Dataset HE
38.7, NTgrowth (de la Maza, 1991)
71.3, CN2 (ordered,entropy) (Clark & Boswell, 1991)
76.3, ========================================================= 1R ====
77.6, CN2 (ordered,laplace) (Clark & Boswell, 1991)
77.8, ID unpruned (Peter Clark, personal communication)
78.6, Gain Ratio (Lopez de Mantaras, 1991)
79.3, C4 (Clark & Boswell, 1991)
79.3, Distance (Lopez de Mantaras, 1991)
79.4, ============================== BASELINE ACCURACY ================
79.8, C4 (de la Maza, 1991)
79.8, m=0.0 (Cestnik & Bratko, 1991)
79.8, m=0.01 (Cestnik & Bratko, 1991)
79.9, Proto-TO (de la Maza, 1991)
80.0, (cited in the UCI files) (Diaconis & Efron, 1983)
80.0, Assistant (no pruning) (Cestnik et al., 1987))
80.1, CN2 (unordered,laplace) (Clark & Boswell, 1991)
81.1, m=1 (Cestnik & Bratko, 1991)
81.2, C4 (pruned) (this paper)
81.5, m=0.5 (Cestnik & Bratko, 1991)
82.0, Assistant (post-pruning) (Cestnik et al., 1987))
82.1, laplace (Cestnik & Bratko, 1991)
82.1, m=2 (Cestnik & Bratko, 1991)
83.0, Assistant (pre-pruning) (Cestnik et al., 1987))
83.6, m=3 (Cestnik & Bratko, 1991)
83.8, m=128 (Cestnik & Bratko, 1991)
83.8, m=32 (Cestnik & Bratko, 1991)
83.8, m=64 (Cestnik & Bratko, 1991)
83.8, m=999 (Cestnik & Bratko, 1991)
84.0, Bayes (Cestnik et al., 1987))
84.0, m=8 (Cestnik & Bratko, 1991)
84.5, ========================================================= 1Rw ===
84.5, m=4 (Cestnik & Bratko, 1991)
85.5, m=12 (Cestnik & Bratko, 1991)
85.5, m=16 (Cestnik & Bratko, 1991)
85.8, ========================================================= 1R* ===
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Dataset HY
88.4, quadratic discriminant (Weiss & Kapouleas, 1989)
92.4, Bayes(second order) (Weiss & Kapouleas, 1989)
92.6, random (Buntine & Niblett, 1992)
93.9, linear discriminant (Weiss & Kapouleas, 1989)
95.3, nearest neighbour (Weiss & Kapouleas, 1989)
96.1, Bayes (Weiss & Kapouleas, 1989)
97.1, growth (Kibler & Aha, 1988)
97.2, ========================================================= 1R ====
97.4, ========================================================= 1R* ===
97.7, NTgrowth (Kibler & Aha, 1988)
98.0, ========================================================= 1Rw ===
98.2, C4 (Kibler & Aha, 1988)
98.5, neural net (Weiss & Kapouleas, 1989)
98.7, Marsh (Buntine & Niblett, 1992)
99.0, GINI (Buntine & Niblett, 1992)
99.1, C4 (pruned) (this paper)
99.1, Info Gain (Buntine & Niblett, 1992)
99.1, PT2 (Utgoff & Bradley, 1990)
99.3, C4-rules (Quinlan, 1987)
99.3, PVM (Weiss & Kapouleas, 1989)
99.4, C4 (Quinlan, 1987)
99.4, CART (Weiss & Kapouleas, 1989)
99.7, C4 (Quinlan et al., 1986)

Dataset IR
84.0, Bayes(second order), (cross-validation) (Weiss & Kapouleas, 1989)
85.8, random (Buntine & Niblett, 1992)
89.3, Prob, Reduce (Mingers, 1989)
90.5, Prob, Err-comp (Mingers, 1989)
91.1, Marsh, Critical (Mingers, 1989)
91.2, Marsh, Pessim (Mingers, 1989)
91.3, Prob, Critical (Mingers, 1989)
92.2, Marsh, Min-err (Mingers, 1989)
92.3, NTgrowth (de la Maza, 1991)
92.4, Marsh, Err-comp (Mingers, 1989)
92.4, Marsh, Reduce (Mingers, 1989)
92.4, Prob, Pessim (Mingers, 1989)
92.4, growth (Kibler & Aha, 1988)
92.5, G-R, Critical (Mingers, 1989)
92.5, G-R, Err-comp (Mingers, 1989)
92.5, G-R, Pessim (Mingers, 1989)
92.5, G-R, reduce (Mingers, 1989)
92.6, EACH without feature adjustment (Salzberg, 1991)
92.8, G-stat, Critical (Mingers, 1989)
92.8, G-stat, Err-comp (Mingers, 1989)
92.8, G-stat, Min-err (Mingers, 1989)
(continued next page)
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Dataset IR (continued)
92.8, G-stat, Pessim (Mingers, 1989)
92.8, G-stat, Reduce (Mingers, 1989)
93.0, CART (Salzberg, 1991)
93.2, G-R, Min-err (Mingers, 1989)
93.3, Bayes, (cross-validation) (Weiss & Kapouleas, 1989)
93.3, Prob, Min-err (Mingers, 1989)
93.5, ========================================================= 1R ====
93.8, C4 (pruned) (this paper)
94.0, ID3 (pruned) (Buntine, 1989)
94.2, C4 (de la Maza, 1991)
94.2, ID3 (Catlett, 1991a)
94.2, ID3 (new version) (Catlett, 1991a)
94.4, C4 (Kibler & Aha, 1988)
94.4, ID3 (averaged) (Buntine, 1989)
94.5, Marsh (Buntine & Niblett, 1992)
94.7, Dasarathy (Hirsh, 1990)
95.0, GINI (Buntine & Niblett, 1992)
95.1, Info Gain (Buntine & Niblett, 1992)
95.3, CART, (cross-validation) (Weiss & Kapouleas, 1989)
95.3, EACH with feature adjustment (Salzberg, 1991)
95.4, NTgrowth (Kibler & Aha, 1988)
95.5, Bayes (Buntine, 1989)
95.5, Bayes/N (Buntine, 1989)
95.9, ========================================================= 1R* ===
96.0, ========================================================= 1Rw ===
96.0, PVM, (cross-validation) (Weiss & Kapouleas, 1989)
96.0, Proto-TO (de la Maza, 1991)
96.0, nearest neighbour, (cross-validation) (Weiss & Kapouleas, 1989)
96.7, IVSM, (Hirsh, 1990)
96.7, neural net, (cross-validation) (Weiss & Kapouleas, 1989)
97.3, quadratic discriminant, (cross-validation) (Weiss & Kapouleas, 1989)
98.0, linear discriminant, (cross-validation) (Weiss & Kapouleas, 1989)

Dataset LA
71.5, ========================================================= 1R ====
77.0, 1-nearest neighbour (Bergadano et al., 1992)
77.3, C4 (pruned) (this paper)
80.0, 5-nearest neighbour (Bergadano et al., 1992)
80.0, AQ15 (strict or flexible matching) (Bergadano et al., 1992)
83.0, 3-nearest neighbour (Bergadano et al., 1992)
83.0, AQ15 ("top rule" truncation) (Bergadano et al., 1992)
83.0, AQ15 (TRUNC-SG,flexible matching) (Bergadano et al., 1992)
84.2, ========================================================= 1Rw ===
86.0, Assistant (with pruning) (Bergadano et al., 1992)
87.4, ========================================================= 1R* ===
90.0, AQ15 (TRUNC-SG,deductive matching) (Bergadano et al., 1992)
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Dataset LY
56.1, m=999 (Cestnik & Bratko, 1991)
67.7, random (Buntine & Niblett, 1992)
69.1, m=128 (Cestnik & Bratko, 1991)
70.7, ========================================================= 1R ====
71.5, CN2 (ordered,entropy) (Clark & Boswell, 1991)
74.8, m=64 (Cestnik & Bratko, 1991)
75.0, m=16 (Cestnik & Bratko, 1991)
75.6, GINI (Buntine & Niblett, 1992)
75.7, ========================================================= 1Rw ===
75.7, Marsh (Buntine & Niblett, 1992)
75.9, m=12 (Cestnik & Bratko, 1991)
75.9, m=32 (Cestnik & Bratko, 1991)
76.0, AQR (Clark & Niblett (1987,1989))
76.0, Assistant (no pruning) (Cestnik et al., 1987))
76.0, Assistant (no pruning) (Michalski, 1990)
76.0, Assistant (post-pruning) (Cestnik et al., 1987))
76.0, Assistant (pre-pruning) (Cestnik et al., 1987))
76.0, Info Gain (Buntine & Niblett, 1992)
76.4, C4 (Clark & Boswell, 1991)
76.7, ID3 (pruned) (Buntine, 1989)
76.8, m=8 (Cestnik & Bratko, 1991)
77.0, Assistant (pruning) (Michalski, 1990)
77.1, laplace (Cestnik & Bratko, 1991)
77.1, m=4 (Cestnik & Bratko, 1991)
77.3, ========================================================= 1R* ===
77.3, m=0.01 (Cestnik & Bratko, 1991)
77.3, m=0.5 (Cestnik & Bratko, 1991)
77.3, m=1 (Cestnik & Bratko, 1991)
77.3, m=2 (Cestnik & Bratko, 1991)
77.3, m=3 (Cestnik & Bratko, 1991)
77.5, C4 (pruned) (this paper)
77.5, m=0.0 (Cestnik & Bratko, 1991)
78.0, Assistant (pruning) (Clark & Niblett (1987,1989))
78.4, ID3 (averaged) (Buntine, 1989)
79.0, Assistant (no pruning) (Clark & Niblett (1987,1989))
79.0, Bayes (Cestnik et al., 1987))
79.6, CN2 (ordered,laplace) (Clark & Boswell, 1991)
80.0, AQTT15 (unique>1) (Michalski, 1990)
81.0, AQTT15 (Michalski, 1990)
81.7, CN2 (unordered,laplace) (Clark & Boswell, 1991)
82.0, AQ15 (Michalski et al., 1986)
82.0, AQTT15 (biggest disjuncts) (Michalski, 1990)
82.0, Bayes/N (Buntine, 1989)
82.0, CN2(99) (Clark & Niblett (1987,1989))
83.0, Bayes (Clark & Niblett (1987,1989))
85.1, Bayes (Buntine, 1989)

29 Machine Learning 11:63-91, 1993



Dataset MU
91.2, random (Buntine & Niblett, 1992)
92.7, Marsh (Buntine & Niblett, 1992)
95.0, HILLARY (Iba et al., 1988)
95.0, STAGGER (Schlimmer, 1987)
98.4, ========================================================= 1R ====
98.4, ========================================================= 1R* ===
98.5, ========================================================= 1Rw ===
98.6, GINI (Buntine & Niblett, 1992)
98.6, Info Gain (Buntine & Niblett, 1992)
99.1, neural net (Yeung, 1991)
99.9, ID3 (Wirth & Catlett, 1988)
100.0, C4 (pruned) (this paper)

Dataset SE
91.8, growth (Kibler & Aha, 1988)
95.0, ========================================================= 1R ====
95.0, ========================================================= 1R* ===
95.0, ========================================================= 1Rw ===
95.0, RAF (Quinlan, 1989)
95.2, RUU (Quinlan, 1989)
95.4, RSS (Quinlan, 1989)
95.9, NTgrowth (Kibler & Aha, 1988)
96.1, RPF (Quinlan, 1989)
96.2, RFF (Quinlan, 1989)
96.3, RIF (Quinlan, 1989)
96.8, RCF (Quinlan, 1989)
97.3, C4 (Kibler & Aha, 1988)
97.7, C4 (pruned) (this paper)
99.2, C4 (Quinlan et al., 1986)

Dataset VO
84.0, 3-nearest neighbour (Bergadano et al., 1992)
84.0, 5-nearest neighbour (Bergadano et al., 1992)
84.6, random (Buntine & Niblett, 1992)
85.0, AQ15 ("top rule" truncation) (Bergadano et al., 1992)
85.2, NT K-nearest neighbour growth (K=3) (Aha & Kibler, 1989)
86.0, 1-nearest neighbour (Bergadano et al., 1992)
86.0, AQ15 (strict or flexible matching) (Bergadano et al., 1992)
86.0, Assistant (with pruning) (Bergadano et al., 1992)
86.2, K-nearest neighbour (K=3) (Aha & Kibler, 1989)
86.4, K-nearest neighbour growth (K=3) (Aha & Kibler, 1989)
88.2, Marsh (Buntine & Niblett, 1992)
90.4, Proto-TO (de la Maza, 1991)
90.6, NTgrowth (de la Maza, 1991)
90.7, growth (Aha & Kibler, 1989)
90.8, IWN(add-or) (Tan & Eshelman, 1988)
(continued next page)
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Dataset VO (continued)
91.7, proximity. (Aha & Kibler, 1989)
91.9, NTgrowth (Aha & Kibler, 1989)
92.0, AQ15 (TRUNC-SG,deductive matching) (Bergadano et al., 1992)
92.0, AQ15 (TRUNC-SG,flexible matching) (Bergadano et al., 1992)
92.4, disjunctive spanning (Aha & Kibler, 1989)
92.9, NT disjunctive spanning (Aha & Kibler, 1989)
93.6, CN2 (ordered,entropy) (Clark & Boswell, 1991)
93.9, IWN(max-or) (Tan & Eshelman, 1988)
94.0, ID3 (Fisher & McKusick, 1989)
94.3, IWN(add-or) (Tan & Eshelman, 1988)
94.5, C4 (Aha & Kibler, 1989)
94.8, CN2 (ordered,laplace) (Clark & Boswell, 1991)
94.8, CN2 (unordered,laplace) (Clark & Boswell, 1991)
95.0, IRT (Jensen, 1992)
95.0, STAGGER (Schlimmer, 1987)
95.2, ========================================================= 1R ====
95.2, ========================================================= 1R* ===
95.3, C4 (de la Maza, 1991)
95.3, neural net (Yeung, 1991)
95.4, Info Gain (Buntine & Niblett, 1992)
95.5, GINI (Buntine & Niblett, 1992)
95.6, ========================================================= 1Rw ===
95.6, C4 (Clark & Boswell, 1991)
95.6, C4 (pruned) (this paper)

Dataset V1
84.4, random (Buntine & Niblett, 1992)
84.9, Marsh (Buntine & Niblett, 1992)
86.8, ========================================================= 1R ====
87.0, Info Gain (Buntine & Niblett, 1992)
87.2, GINI (Buntine & Niblett, 1992)
87.4, ========================================================= 1Rw ===
87.9, ========================================================= 1R* ===
89.4, C4 (pruned) (this paper)

31 Machine Learning 11:63-91, 1993



APPENDIX D. Data from the 25 runs on each dataset.

1R* C4 t-values
mean std.dev. mean std.dev. C4-1R* 1R*-1Rw C4-1Rw

Dataset 1Rw

BC 72.46 4.23 71.96 4.36 72.7 -0.82 -0.27 -0.83

CH 69.24 0.95 99.19 0.27 68.3 134.7 4.85 571

GL 56.44 5.06 63.16 5.71 62.2 4.98 -5.53 0.86

G2 77.02 3.88 74.26 6.61 78.5 -1.93 -1.90 -3.17

HD 78.00 2.68 73.62 4.44 76.57 -5.18 2.62 -3.26

HE 85.14 6.23 81.23 5.12 84.5 -2.69 0.51 -3.13

HO 81.18 1.95 83.61 3.41 81.5 4.05 -0.86 3.01

HY 97.20 0.67 99.13 0.27 98.0 13.44 -5.88 20.59

IR 95.92 1.55 93.76 2.96 96.0 -3.61 -0.25 -3.71

LA 87.37 4.48 77.25 5.89 84.2 -7.11 3.47 -5.78

LY 77.28 3.75 77.52 4.46 75.7 0.21 2.07 2.00

MU 98.44 0.20 100.0 0.0 98.5 37.47 -1.44 ∞
SE 95.00 0.54 97.69 0.40 95.0 30.3 0.04 32.8

SO 87.00 6.62 97.51 3.94 87.2 6.55 -0.15 12.81

VO 95.18 1.52 95.57 1.31 95.6 1.59 -1.34 -0.12

V1 87.93 2.22 89.36 2.45 87.4 3.93 1.17 3.92
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