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ABSTRACT
The Euclidean Minimum Spanning Tree problem has appli-
cations in a wide range of fields, and many efficient algo-
rithms have been developed to solve it. We present a new,
fast, general EMST algorithm, motivated by the clustering
and analysis of astronomical data. Large-scale astronomical
surveys, including the Sloan Digital Sky Survey, and large
simulations of the early universe, such as the Millennium
Simulation, can contain millions of points and fill terabytes
of storage. Traditional EMST methods scale quadratically,
and more advanced methods lack rigorous runtime guaran-
tees. We present a new dual-tree algorithm for efficiently
computing the EMST, use adaptive algorithm analysis to
prove the tightest (and possibly optimal) runtime bound for
the EMST problem to-date, and demonstrate the scalability
of our method on astronomical data sets.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General; I.5.3 [Clustering]: Algorithms

General Terms
Algorithms, Theory

Keywords
Adaptive Algorithm Analysis, Euclidean Minimum Span-
ning Trees

1. INTRODUCTION
We present a new algorithm for the fundamental and widely

applied Euclidean Minimum Spanning Tree (EMST) prob-
lem. Given a set of points S in R

d, our goal is to find
the lowest weight spanning tree in the complete graph on S
with edge weights given by the Euclidean distances between
points. With references in the literature as early as 1926, the
MST problem is one of the oldest and most thoroughly stud-
ied problems in computational geometry [36]. In addition to
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this long-standing theoretical and algorithmic interest, the
MST is useful for many practical data analysis problems.
Many optimization problems can be posed as the search for
the MST in a network [36]. The MST is also used as an
approximation for the traveling salesman problem [24], in
document clustering [48], analysis of gene expression data
[15], wireless network connectivity [46], percolation analyses
[8], and modeling of turbulent flows [44], among other areas.
These problems are commonly solved in the Euclidean set-
ting. In this case, the computational bottleneck in both tra-
ditional MST algorithms like Kruskal’s [28] and Prim’s [37]
and more advanced methods is finding the nearest neigh-
bor of components in a spanning forest. We propose a new
method to overcome this obstacle and demonstrate its the-
oretical and experimental superiority.

In particular, we are interested in using the EMST to
compute hierarchical clusterings [20, 53]. One such cluster-
ing is obtained by deleting all edges longer than a specified
cutoff in the MST, generating a clustering through the re-
maining connected components. By varying the scale of the
cutoff, this generates a hierarchical clustering. In the clus-
tering literature, this is often referred to as a single-linkage
clustering and is frequently represented by a dendrogram.
While the single-linkage clustering is very simple and can
be sub-optimal for many applications, it can form the basis
of more insightful clusterings. The single linkage clustering
can be pruned to obtain more useful astronomical results
[4]. MST’s also form the inner loop for methods to identify
non-parametric clusters in noisy data [49]. Furthermore,
theoretically optimal clusterings can be obtained efficiently
from the single-linkage clustering [3].

In astronomy, EMST-based clustering is used to analyze
deep-space surveys and simulations of the early universe.
Each level of single-linkage clustering is known as a friend-
of-friends clustering [40, 2]. The EMST is used to identify
dark matter haloes in simulations, which are believed to be
crucial to galaxy formation [29]. Clustering is also applied
to sky surveys to identify the super-large scale structure of
the universe, which sheds light on the conditions of the early
universe and the mechanisms of galaxy formation [4].

The volume of data produced in the astronomy commu-
nity has grown explosively in recent years. Recent large
surveys include the Las Campanas Redshift Survey (26,418
objects) [42], the 6dF Galaxy Survey (125,071 galaxies) [25],
the 2dF Galaxy Redshift Survey (382,323 objects) [13], and
the Sloan Digital Sky Survey (over 230 million objects) [52].
In addition, our understanding of cosmology has benefit-
ted from large-scale simulations of the formation of galaxies
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and conditions in the early universe. For example, the Mil-
lennium Simulation [43] contains over 1 billion points and
produces terabytes of output. The analysis of the current
structure of the universe as revealed in the large sky surveys
and comparison to the predictions of theories in simulations
are the keys to understanding the origins of the cosmos and
validating new models, including verification of dark mat-
ter and dark energy. This in turn requires the ability to
compute minimum spanning trees quickly and accurately
for very large data from a variety of distributions.

Adaptive Analysis. Traditional approaches to algo-
rithm analysis use the running time for the worst possible
input as an upper bound for the running time of all in-
stances. This often leads to overly pessimistic bounds due
to a few pathological inputs. Adaptive analysis seeks to
improve these results by considering properties of the in-
puts in the analysis. By bounding the runtime in terms of
these properties, one can obtain tighter and more informa-
tive bounds. Adaptive analysis has been successfully applied
to many fundamental problems including searching in lists
[6], merging arrays [14], sorting [16], and the convex hull
problem [27]. Despite these successes, the difficulty of char-
acterizing the inputs in relation to the problem has limited
the number of applications.

Our Contribution. We present a new Euclidean mini-
mum spanning tree algorithm, DualTreeBoruvka. Using
the dual-tree algorithmic framework [22], we can efficiently
compute the shortest edge between components in a span-
ning forest, thus overcoming the bottleneck of most EMST
methods. We show:

• The first application of adaptive algorithm anal-
ysis to the EMST problem in order to achieve
tighter and more precise runtime bounds to-date.

• The asymptotically fastest EMST runtime:

O(N log N α(N)) ≈ O(N log N)

where α(N) is related to the functional inverse of Ack-
ermann’s function and α(1080) ≤ 4. Our analysis, un-
like some previous work, accounts for complexity of
tracking connected components in a partial MST and
reduces the difference between upper and lower bounds
to a factor of α(N).

• The fastest experimental results compared to the
previous state-of-the art, the GeoMST2 algorithm [31]
and Bentley and Friedman’s kd-tree-based method [5],
on a range of synthetic and natural data sets, including
both high- and low-dimensional data and data from
astronomical surveys and simulations.

Paper Outline. We review MST algorithms, both gen-
eral and Euclidean, and their runtime bounds in section 2.
In section 3, we define certain inherent properties of a dataset
that are necessary to characterize the difficulty of computing
the MST. In section 4, we describe the DualTreeBoru-

vka algorithm and bound the running time of the cover-
tree-based version in section 5. In section 6, we compare
our algorithm to several competing methods with empirical
timings for synthetic data and astronomical surveys, and we
conclude in section 7.

2. RELATED WORK
Many MST algorithms rely on Tarjan’s blue rule [45],

which says the minimum weight edge across any edge cut
is in the minimum spanning tree. This allows us to greedily
form cuts in the graph and add the minimum weight edge
across each. Algorithms using this rule include Kruskal’s [28]
and Prim’s [37], which require O(m log n) and O(m+n log n)
time, respectively, on a graph with n points and m edges.
Both algorithms maintain one or more components in span-
ning forest and use the cut between one component of the
forest and the rest of the graph, adding the edges found in
this way one at a time.

Boruvka’s Algorithm. In this work, we focus on the
earliest known minimum spanning tree algorithm, Bor̊uvka’s
algorithm, which dates from 1926. See [32] for a transla-
tion and commentary on Boruvka’s original papers. As in
Kruskal’s algorithm, a minimum spanning forest is main-
tained throughout the algorithm. Kruskal’s algorithm adds
the minimum weight edge between any two components of
the forest at each step, thus requiring N − 1 steps to com-
plete. Bor̊uvka’s algorithm finds the minimum weight edge
incident with each component, and adds all such edges, thus
requiring at most log N steps and a total running time of
O(m log n). We define the nearest neighbor pair of a com-
ponent C as the pair of points q ∈ C, r �∈ C that minimizes
d(q, r). Finding the nearest neighbor pair for each compo-
nent and adding the edges (p, q) to the forest is called a
Boruvka step. Boruvka’s algorithm then consists of forming
an initial spanning forest with each point as a component
and iteratively applying Boruvka steps until all components
are joined.

General MST Algorithms. More recently, sophisti-
cated algorithms have been developed for the MST problem
on general graphs. Fredman & Tarjan [17] showed a bound
of O(m log∗ n), which was soon improved to O(m log log∗ m)
[19]. Yao further improved the bound to O(m log log n) [50].
Chazelle showed O(mα log α), where α(m, n) is a functional
inverse of Ackermann’s function [11]. Chazelle [12] and Pet-
tie [34] improved this to O(mα). The current tightest bound,
due to Pettie & Ramachandran [35] in 2002, is O(T ∗(m,n)),
where T ∗ is bounded from below by Ω(m) and above by
O(m · α). All these general algorithms are insufficient for
large, metric problems because they depend linearly on the
number of edges. In the Euclidean case, the edge set con-
sists of all pairs of points. Therefore, linear scaling in m
corresponds to quadratic scaling in the number of points,
and thus we need to consider other approaches.

Euclidean MST Algorithms. Shamos & Hoey [41] ap-
plied the Voronoi diagram to constructing the MST in the
Euclidean plane. The Voronoi diagram can be constructed
in O(N log N) time for N points and contains O(N) edges.
Since the MST is a subset of the edges in the dual of the
Voronoi diagram, the MST can be found in O(N log N) time
using one of the algorithms above. This bound worsens to
O(N2 log N) in three or more dimensions, fundamentally
limiting this method to two dimensional cases. Preparata
and Shamos [36] give a lower bound for the EMST problem
of Ω(N log N), which is the tightest known lower bound.

Bentley and Friedman [5] developed an EMST algorithm
using kd-tree-based nearest neighbor searches to find the
next edge to add in Prim’s algorithm. While their method
lacks a formally rigorous bound, they estimate that it re-
quires O(N log N) time for most distributions of points. An
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alternate implementation of this approach is given in [33]. In

1982, Yao gave a bound of O(N2−a(k)(log N)1−a(k)) where

a(k) = 2−(k+1) for points in a k-dimensional metric space,
along with a O((N log N)1.8) bound for points in three di-
mensions [51]. Agarwal et al. (1991) related the running
time to the bichromatic closest pair (BCP) problem. Given
a set of red and a set of blue points, the bichromatic closest
pair is the red point r and blue point b such that d(r, b) is
minimized. They showed a bound of O(Fd(N, N) logd(N)),
where Fd(N, M) is the time to solve the BCP problem with
N blue and M red points in d dimensions [1].

WSPD-based Methods. Callahan & Kosaraju’s Well-
Separated Pair Decomposition (WSPD) [10] forms the basis
of the most recent EMST algorithms. The WSPD is defined
as a set of pairs of nodes in a space-partitioning tree such
that for each pair of points (p, q), we have p ∈ P, q ∈ Q
for exactly one pair of nodes (P, Q), and the the nodes in
any pair are farther apart than the diameter of either node.
It can be shown that the WSPD has O(N) pairs of nodes,
and that the MST is a subset of the edges formed between
the closest pair of points in each pair of nodes. In [9], the
authors use the WSPD to improve Agarwal and coworker’s
1991 bound to O(Fd(N, N) log N). Their algorithm uses the
WSPD-based nearest neighbor algorithm to compute neigh-
bors of components for Boruvka’s algorithm. The method
identifies a list of pairs in the WSPD, for which bichromatic
closest pair computations are performed to find edges of the
MST. This algorithm is superficially similar to our method,
but only locates neighbors for small components in each
iteration. It also requires bookkeeping and connectedness
queries which are not factored into the analysis, and no ex-
perimental results are shown.

Narasimhan et al. [31] implement a variant of this method,
which they attribute to [9]. In this algorithm, GeoMST,
they compute the BCP for each pair in the WSPD, then
apply Kruskal’s algorithm to the resulting edge set. They
improve this method by postponing and avoiding some BCP
computations and refer to the resulting algorithm as Ge-

oMST2. This method can be successfully applied to point
sets of any dimensionality; however, the constant in the
O(N) size of the WSPD grows exponentially in the dimen-
sion and is often very large in practice. The authors ar-
gue that the algorithm has an expected O(N log N) running
time, but do not prove this rigorously. They also demon-
strate favorable running times on several data sets.

These algorithms are the most sophisticated methods for
the EMST problem in terms of both theoretical analysis and
practical performance. The runtime bound in terms of the
bichromatic closest pairs problem is the tightest available
given optimistic runtimes for bichromatic closest pairs, but
it is incomplete without bounding Fd. Bentley and Fried-
man’s kd-tree-based method and the tree- and WSPD-based
GeoMST2 are the most practically viable algorithms. We
return to these methods in our experimental analysis.

3. PROPERTIES OF THE DATA
We now consider the problem of computing the EMST in

relation to properties of the data. We present three objective
parameters, independent of any algorithm and argue that
these parameters capture difficulties in computing the MST.

Expansion Constant. The expansion constant, due to
Karger and Ruhl [26], bounds the maximum increase in the

density of points as a function of the distance from any point,
and was used in adaptive analysis of nearest neighbors in
previous work [7, 38].

Definition 1. Let S be a set of points in a metric space
(X, d). Let BS(p, r) = {q ∈ S : d(p, q) ≤ r}. Then, the
expansion constant c of S is defined as the smallest c ≥ 2
such that for all p ∈ X and all r > 0

|BS(p, 2r)| ≤ c|BS(p, r)| (1)

While the expansion constant depends only on the pair-
wise distances between points, the MST has a“higher-order”
structure. In other words, the MST depends on distances
between clusters of points in addition to distances between
the individual points. Since the expansion constant does not
capture this structure, we define two new parameters: the
cluster expansion constant and linkage expansion constant.

Boruvka Clustering. We first require a definition of
clusters. Independently of how they are computed, succes-
sive Boruvka steps define a hierarchical clustering of the
data. We can therefore define and use the Boruvka clus-
tering without reference to any method for computing it.

Definition 2. Given a point set S, the Boruvka clustering
at level i, Di, is the clustering obtained from applying a
single Boruvka step to the clustering Di−1. D1 consists of
each point as its own cluster.

Cluster Expansion Constant. Given the Boruvka clus-
tering, we define the new expansion constants. Let Bc

i (q, r)
be the set of all components Cp with a point p ∈ Cp such
that d(q, p) ≤ r. Using this component-wise ball, we define
the cluster expansion constant.

Definition 3. The cluster expansion constant is the small-
est real number cp such that

|Bc
i (q, 2r)| ≤ cp|Bc

i (q, r)| (2)

for all points q ∈ S, distances r > 0, and each level of the
Boruvka clustering Di.

Linkage Expansion Constant. Let C1 and C2 be two
clusters in the Boruvka clustering at level i and let S1 ⊆ C1

and S2 ⊆ C2. Let Bl
i(S1, S2, r) be the set of all pairs (p, q)

such that p ∈ S1, q ∈ S2, and d(p, q) ≤ r.

Definition 4. The linkage expansion constant is the small-
est real number cl such that

|Bl
i(S1, S2, 2r)| ≤ cl|Bl

i(S1, S2, r)| (3)

for all levels of the Boruvka clustering Di, clusters C1 and
C2 at level i, subsets S1 ⊆ C1, S2 ⊆ C2, and distances r > 0.

Intuition for New Parameters. The time to com-
pute the EMST for any algorithm is ultimately governed
by the number of distance computations needed to distin-
guish edges that belong in the MST from those that do not.
If the incorrect edges can be excluded from consideration
with few computations, then it may be possible to compute
the MST efficiently. On the other hand, if there are very
many possible nearest neighbors of a given component, it
may be impossible to avoid computing the distances to all
such neighbors to find the nearest.

One possible case where the correct MST edge may be
difficult to identify is given in Figure 1(a). Since Q is nearly
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(a) Large expansion
constant.

(b) Large cluster expansion
constant.

(c) Large linkage expansion
constant.

Figure 1: Cases illustrating expansion constants.

equidistant from the points in R, there are many edges with
nearly the same length as the edge in the MST. In this case,
the expansion constant must be at least as large as the num-
ber of points in R.

Figure 1(b) shows an analogous possibility. Here, the
MST must have an edge from the component Q to one of
the components in the ring R. As before, the possible edges
have nearly the same length, and it may be difficult to find
the shortest edge. However, the expansion constant may
still be small relative to the number of points. If Q contains
|R|/c points, then it is possible for the expansion constant
to be bounded by c, even if R has O(N) points. The cluster
expansion constant is large in this case, so it captures this
possible source of difficulty in computing the MST.

Figure 1(c) shows another case where finding the correct
edges of the MST is difficult. There are many possible
nearest neighbor pairs, and therefore many possible near-
est neighbor edges, between Q and R. As in Figure 1(b),
the expansion constant may still be small. Since this set
has only two components, the cluster expansion constant is
small as well. Here, the linkage expansion constant is large,
capturing the difficulty of identifying the MST edge.

As we contended above, the EMST depends on distances
between groups of points as well as the pairwise distances.
We also argued that the expansion constant alone is insuffi-
cient to quantify the amount of computation needed to iden-
tify edges in the MST, thus motivating the need for further
parameters to understand the behavior of any MST algo-
rithm. We now turn to the definition and adaptive analysis
of our new algorithm, DualTreeBoruvka, and show that
the combination of all three types of expansion constant does
contain enough information about the data to obtain a more
precise analysis of the EMST problem.

4. DUAL-TREE BORUVKA ALGORITHM
The running time of Bor̊uvka’s algorithm depends on an

efficient method to find the nearest neighbor pair of each
component. Here, we describe a method to compute all
nearest neighbor pairs simultaneously by amortizing some
computations across different points. This allows us to im-
plement Boruvka’s algorithm more efficiently than previous
methods.

Dual-Tree Algorithms. Dual-tree algorithms are a com-
putational framework that has been applied to many prob-
lems in computational statistics, physics, and machine learn-
ing. These algorithms are the overall fastest known methods
for many problems, including all nearest neighbors [22], ker-
nel density estimation [23], mean shift [47], kernel discrimi-
nant analysis [39], and n-point correlation functions [22, 30].

For concreteness, consider the all nearest neighbors prob-
lem: we are given a query set Q and a reference set R of
points in Euclidean space, each of O(N) size. The goal is to
find, for each point q ∈ Q, the point r ∈ R such that d(q, r)
is minimized. A brute-force solution to this problem con-
sists of two nested “for” loops which compute all pairwise
distances and requires O(N2) time. We can improve on
this algorithm with a space partitioning tree (e.g. a kd-tree)
built on the set of references. For each query, we descend the
tree, expanding reference nodes closer to the query first. We
store the smallest distance d(q, r) found so far at each stage
of the algorithm, which provides an upper bound on the true
nearest neighbor distance. Given this upper bound, we can
prune nodes in the tree that are far enough away to not
contain the true nearest neighbor, thus reducing the total
number of distance computations. This single-tree method,
described in [18], requires roughly O(N log N) time.

A dual-tree method further improves this by constructing
another tree on Q. We consider both a query and reference
node, and expand both. When the upper bounds allow, we
can then prune a distant reference node for an entire node
of queries with a single distance computation. This delivers
tremendous speedups in practice and has been shown to re-
quire O(N) time after tree construction with a cover tree [7].
We extend this idea to efficiently find the nearest neighbor
pair for each component in a spanning forest.

New Algorithm. Our new algorithm, DualTreeBoru-

vka, uses a dual-tree method to find the nearest neighbor
pair for each component. Algorithm 1 gives the description
of the outer loop. The subroutine UpdateTree handles the
propagation of any bounds up and down the tree and resets
the upper bounds d(Cq) to infinity. We also make use of a
disjoint set data structure [45] to store the connected com-
ponents at each stage of the algorithm. Our algorithm is
independent of the particular space partitioning tree used.
In this paper, we present experimental results on two instan-
tiations of the algorithm. Algorithm 2 uses a kd-tree, and
algorithm 3 uses the cover tree[7].

For the remainder of this work, we assume that we are
given a set S of N points in R

d. Furthermore, we make
the standard assumption that all pairwise distances between
points are unique. We make use of the following notation:

• q ∼ r : q and r belong to the same component of the
spanning forest.

• R �� Q: all points in node R are in the same component
as all points in node Q. Similarly, r �� q in a cover tree
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Algorithm 1 Dual-Tree Bor̊uvka (Tree root q)

E = ∅
while |E| < N − 1 do

3: FindComponentNeighbors(q, q, e)
E ← E ∪ e
UpdateTree(q)

6: end while

denotes that all descendants of r are connected to all
descendants of q.

• Cq : the component of the forest containing q

• d(Cq): distance to current nearest neighbor of compo-
nent Cq (initialized to ∞).

• e(Cq): edge from Cq to its candidate nearest neighbor

• d(Q,R): the minimum distance between the bounding
boxes of nodes Q and R

DualTreeBoruvka on a kd-tree. The kd-tree [36] is a
binary space-partitioning tree which maintains a bounding
box for all the points in each node. The root consists of
the entire set. Children are formed recursively by splitting
the parent’s bounding box along the midpoint of its largest
dimension and partitioning the points on either side.

In the kd-tree version of DualTreeBoruvka, each node
Q maintains an upper bound d(Q) = maxq∈Q d(Cq) and
records whether all the points belong to the same component
of the spanning forest. A node where all points belong to the
same component is referred to as fully connected. With these
records, we can prune when the distance between the query
and reference is larger than d(Q) or when all the points in
Q and R belong to the same component.

Theorem 4.1. The FindComponentNeighbors routine
in Algorithm 2 returns the correct nearest neighbor pairs.

Proof. The algorithm can only prune in two ways. If Q
and R are fully connected, then no edges (q, r) with q ∈ Q
and r ∈ R can be nearest neighbor pairs. The distance-based
prune only occurs when for all q ∈ Q, d(Cq) < d(Q,R).
Therefore, all components with points in Q must have a
candidate neighbor closer than any point in R, which again
implies that no edge (q, r) can be a nearest neighbor pair.
So, for each q ∈ Q, the correct Boruvka neighbor r of the
component Cq cannot be pruned and must be found in the
base case.

DualTreeBoruvka on a Cover Tree. A cover tree is
a data structure introduced by Beygelzimer et al. [7] for
practically and theoretically efficient nearest-neighbor com-
putations. In previous work, a proof of linear running time
for the dual-tree all nearest neighbor algorithm used cover
trees [38]. Here, we give a brief overview of the properties
of a cover tree used in this paper.

A cover tree consists of a set of nested sets Ci, each at a
scale i. A node in the cover tree consists of a single point
and links to the node’s children. The root is a single point
at level∞. As we descend the tree, the scale decreases, until
C−∞ contains the entire set of points. For convenience, we
index nodes in the cover tree with the node’s point and use
pi to denote the node indexed by p at level i of the tree.

Algorithm 2 FindComponentNeighbors(kd-tree node
Q, kd-tree node R, Edge set e)

if Q �� R then
return

3: else if d(Q,R) > d(Q) then
return

else if Q and R are leaves then
6: for all q ∈ Q, r ∈ R, r �∼ q do

if d(q, r) < d(Cq) then
d(Cq) = d(q, r), e(Cq) = (q, r)

9: end if
end for
d(Q) = maxq∈Q d(Cq)

12: else
FindComponentNeighbors(Q.left,R.left, e)
FindComponentNeighbors(Q.right,R.left, e)

15: FindComponentNeighbors(Q.left,R.right, e)
FindComponentNeighbors(Q.right,R.right, e)
d(Q) = max{d(Q.left), d(Q.right)}

18: end if

As in [7], we consider two representations of a cover tree.
Conceptually, an algorithm descends from the root C∞ to
the set of all points at level C−∞, touching every level in
between. Each point in level Ci has itself as a child in level
Ci−1 along with any other children. We refer to this idea
of the tree as the implicit representation and make use of it
in the algorithm description and proof. The explicit repre-
sentation allows us to use the cover tree in practice. In the
implicit representation, there are many levels where a node
has only itself as a child. To create the explicit represen-
tation, we combine all such nodes. Therefore, a node is a
single point, and contains pointers to all its children. The
explicit representation has O(N) nodes [7].

A cover tree has the following invariant properties:

1. Nesting: Ci ⊆ Ci−1

2. Covering: For every p ∈ Ci−1, there exists a q ∈ Ci

such that d(p, q) ≤ 2i and exactly one such q is a parent
of p. Note that this implies that if p′ is any descendant
of a point p ∈ Ci, then d(p, p′) ≤ 2i+1.

3. Separation: For all p, q ∈ Ci, d(p, q) > 2i.

The cover tree version of FindComponentNeighbors

(Algorithm 3) follows the all nearest neighbor pseudocode
given in [38]. The reference set Ri contains all points at
level i that may have a nearest neighbor of a descendant of
qj as one of their descendants. Therefore, points are pruned
from Ri−1 in line 12 only when they are too distant to pro-
vide a neighbor. All descendants of qj are within 2j+1 of qj

and all descendants of points in R are within 2i of a point
in R by the covering invariant. Therefore, any point out-
side the bound in line 12 cannot be a nearest neighbor for
descendants of qj .

Theorem 4.2. The FindComponentNeighbors routine
in Algorithm 3 returns the correct nearest neighbor pair.

Proof. For a query qj being considered at level j, the
algorithm must guarantee that it finds the nearest neighbor
pair both for the component Cq and for all components Cq′ ,
where q′ is a descendant of qj . Pruning a fully-connected
node can never delete the true nearest neighbor pair.

607



Algorithm 3 FindComponentNeighbors(Cover tree
node qj , Reference Set Ri, Edge set e)

if i = −∞ then
// base case

3: for all q that are descendants of qj and r ∈ Ri with
r �∼ q do

if d(q, r) < d(Cq) then
d(Cq) = d(q, r), e(Cq) = (q, r)

6: end if
end for

else if j < i then
9: // reference descend

R = {r ∈ Children(r′) : r′ ∈ Ri and r ��� qj}

d = min

8><
>:

d(Cq), min
r∈R
r∼qj

{d(qj , r) + 2i}, min
r∈R
r �∼qj

{d(qj , r)}

9>=
>;

12: Ri−1 = {r ∈ R : d(qj , r) ≤ d + 2i + 2j+2}
d(Cq) = d
FindComponentNeighbors(qj, Ri−1, e)

15: else
// query descend
for all pj−1 ∈ Children(qj) do

18: FindComponentNeighbors(pj−1, Ri, e)
end for

end if

We then consider distance-based pruning. As before, we
use the nearest neighbor of the component Cq that the al-
gorithm has seen up to this point in the execution. This
candidate neighbor can be either a previously found nearest
neighbor of another point in Cq (in which case d = d(Cq)),
a point r ∈ R (d = d(qj , r)), or an inferred descendant of a
connected point r (d = d(qj , r) + 2i). If qj ∼ r but qj ��� r,
then r must have a descendant r′ that is not connected to qj .
By the covering invariant, d(qj , r

′) ≤ d(qj , r) + 2i. There-
fore, d is a valid upper bound for Cq . Since the distance
between any point in R and any descendant is bounded by
2i, any ancestor of the true nearest neighbor of qj must be
within d+2i, so the algorithm can never prune the ancestor
of this neighbor.

We must also show that d is a valid bound for any descen-
dant q′ of q. If q and q′ are in the same component, then this
is clearly true, since bounds are shared across components.
Otherwise, q is a candidate neighbor for q′ and d(q, q′) ≤
2j+1. Therefore, we can be sure that d(Cq′) ≤ 2j+1. Let
r′ be the correct neighbor for q′, and let r be the ancestor
of r′ in R. Then, d(qj , r) ≤ d(qj , q

′) + d(q′, r′) + d(r′, r) ≤
2j+1 + 2j+1 + 2i = 2j+2 + 2i. Therefore, the distance prune
cannot remove the neighbor of any descendant of q.

5. RUNTIME ANALYSIS
In this section, we prove our main theoretical result:

Theorem 5.1. For a set S of N points in a metric space
with expansion constant c, cluster expansion constant cp,
and linkage expansion constant cl, the DualTreeBoruvka

algorithm using a cover tree requires

O(max{c6, c2
pc2

l } · c10N log N α(N))

time (where α(N) is defined below).

Proof. Since each Bor̊uvka step reduces the number of
components in the spanning forest by a factor of at least two,
the entire algorithm requires at most log N iterations. The
construction of the cover tree takes O(N log N) time (proved
in [7]) and only needs to be done once as a preprocessing
step. Bookkeeping and cleanup in the tree in between calls
to FindComponentNeighbors requires a single depth-first
traversal, which takes O(N) time.

Adding edges requires at most O(N) Union operations on
the disjoint-set structure, each of which requires O(α(N))

time, with α(N) defined as follows. Let Ak(j) = A
(j+1)
k−1 (j)

and let A0(j) = j + 1. Then, define

α(N) = min {k : Ak(1) ≥ N} (4)

Therefore, in order to complete the proof, we only need to
show that the FindComponentNeighbors subroutine on
a cover tree requires O(N α(N)) time.

We first require two lemmas about cover trees, proven in
[7]. Both lemmas assume the cover tree is built on a set of
N points in a metric space with expansion constant c.

Lemma 5.2. (Width Bound) The number of children of
any node in the cover tree is bounded by c4.

Lemma 5.3. (Depth Bound) The maximum depth in the
tree of any point in the explicit representation is O(c2 log N).

We now apply our adaptive analysis to bounding the run-
time of FindComponentNeighbors.

Theorem 5.4. Under the assumptions of Thm. 5.1, the
FindComponentNeighbors algorithm on a cover tree (Al-
gorithm 3) finds the nearest neighbor of each component in
time bounded by:

O
`
N + c4N + max{c6, c2

pc2
l } ·N α(N)

+ max{c6, c2
pc2

l } · c10 log N α(N)
´

Proof. We show that the amount of work done in each
line of the algorithm during the entire execution is at most
O(maxi |Ri|N α(N)). We complete the proof by showing
maxi |Ri| depends only on c, cp, and cl.

Base Case. The base case (lines 1 through 7) is executed
at most once for each explicit query node. Each base case
requires maxi |Ri| Find operations, each of which requires
O(α(N)) time, so this step takes O(maxi |Ri|·N α(N)) time.

Query Descends. Each query node in the explicit repre-
sentation is expanded at most once (line 18), so this step
requires O(N) time overall.

Reference Descends. On the other hand, a reference node
may be expanded more than once. When a query node is
expanded, its reference cover set Ri needs to be duplicated
for each child of the query. By the width bound, this cre-
ates at most c4 duplications. Therefore, the total number of
reference nodes considered in Line 12 is O(c4N).

At each level, |R| ≤ c4 maxi |Ri|. Since the maximum
depth of a node is O(c2 log N) (depth bound), the num-
ber of nodes considered in Line 14 is O(c6 maxi |Ri| log N).
Considering possible duplication across queries, the total
number of calls to Line 14 is at most O(c10 maxi |Ri| log N).
Computing d in each reference descend involves checking the
connectedness of qj and r, which requires O(α(N)) time, for
a total running time of O(c10 maxi |Ri| log N α(N)).
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Bounding |Ri|. For a given query qj and reference cover
set Ri, we compute the upper bound distance d. Then,
Ri−1 = {r ∈ R : d(qj , r) ≤ d + 2i + 2j+2}. Since j < i in
this part of the algorithm, and since the query and reference
trees are identical, j = i−1. Therefore, B(qj , d+2i+2j+2) =
B(qj , d + 2i+1 + 2i).

Consider two cases: first let d ≤ 2i+2. Then, as in [7],
we bound number of balls of radius 2i−2 that can be packed
into B(qj , d + 2i+1) by:

|B(qj , d + 2i+1 + 2i + 2i−2)|
≤ |B(p, 2(d + 2i+1 + 2i) + 2i−2)|
≤ |B(p, 2i+4)|
≤ c6|B(p, 2i−2)|

Each ball of radius 2i−2 can contain at most one point in
Ci−1 by the separation invariant. Therefore, the number of
points in B(qj , d + 2i+1 + 2i) ∩ Ci−1 ⊆ Ri−1 is at most c6.

Consider the other case where d > 2i+2. Without loss
of generality, assume that we have computed k previous it-
erations. First note that all points within B(qj , d − 2i+1)
must be connected to qj . Otherwise, let q′ be a point in
B(qj , d − 2i+1) that is not connected to qj . Then, q′ has
a grandparent q′′ at level Ci−1 such that d(q′, q′′) ≤ 2i.
Therefore,

d(qj , q
′′) ≤ d(qj , q

′) + d(q′, q′′) < d− 2i+1 + 2i = d− 2i

Therefore, d(qj , q
′′) + 2i < d and qj ��� q′′, which contradicts

the definition of d in line 11.
The number of components that qj may have to search is

bounded by

|Bc
p(qj , d + 2i+1 + 2i)| ≤ |Bc

k(qj , 2d)|
≤ c2

p|Bc
k(qj , d/2)|

≤ c2
p|Bc

k(qj , d− 2i+1)|

As noted above, all points within d−2i+1 of qj are connected
to qj , so the only component in Bc

k(qj , d− 2i+1) is Cq.
We now bound the number of points within a component

that qj may have to consider. Let Cr be a component dis-
tinct from Cq. Let L(qj) denote the set of all leaves that are
descendants of qj . Let d′ = minq∈L(qj),r∈Cr d(q, r). Then,

|Bl
k(Cq ∩ L(qj), Cr, d + 2i+1 + 2i)|
≤ |Bl

k(Cq ∩ L(qj), Cr, 4(d− 2i+1))|
≤ c2

l |Bl
k(Cq ∩ L(qj), Cr, (d− 2i+1)|

≤ c2
l |Bl

k(Cq ∩ L(qj), Cr, d
′)|

By the above argument, there can be at most one pair in
Bl

k(Cq∩L(qj), Cr, d
′). Therefore, there are at most c2

l points
in Cr contained in B(qj , d + 2i+1 + 2i). In the worst case,
each of these points is at level Ci−1 of the tree and must
be considered in Ri−1. There are at most c2

p components
Cr that can contribute points, so the maximum number of
points in Ri−1 is c2

pc2
l .

Combining these cases, we have maxi |Ri| ≤ max{c6, c2
pc2

l }.

Therefore, the running time is:

O
`
N + c4N + max{c6, c2

pc2
l } ·N α(N)

+ max{c6, c2
pc2

l } · c10 log N α(N)
´

which completes the proof.

Theorem 5.4 shows that each call to FindComponent-

Neighbors requires at most O(N α(N) time. By combin-
ing this with the observation above that DualTreeBoru-

vka requires at most log N calls to FindComponentNeigh-

bors, we arrive at the runtime stated in Thm. 5.1, namely

O(N log N α(N)) ≈ O(N log N)

6. IMPLEMENTATION & EXPERIMENTS
Algorithms Implemented. We present results for kd-

tree-based and cover-tree-based DualTreeBoruvka. For
comparsion, we implemented the other fast EMST methods
mentioned in section 2. Specifically, we compare against the
single-fragment EMST algorithm from Bentley and Fried-
man [5], which is an implementation of Prim’s algorithm.
The algorithm uses a single-tree algorithm on a kd-tree to
find the next edge to add at each step. We also show results
for the WSPD-based algorithm GeoMST2 [31], described
above. Finally, we compare against a näıve implementation
of Boruvka’s algorithm in which nearest neighbor pairs are
computed by iterating over all pairs of points.

Datasets. The experiments here are on four datasets:
one synthetic and three sets of astronomy data. The syn-
thetic data are drawn from a mixture of ten evenly weighted
Gaussians placed uniformly at random in the unit cube in
three dimensions. Figure 2(a) compares timing results on
these data. Figure 2(b) shows runtimes on four dimensional
samples of spectral data from the Sloan Digital Sky Sur-
vey. Table 1 has results for two other astronomy datasets:
a 40,000 point, 3,840-dimensional set of color spectra from
the SDSS, and a million point, 3 dimensional set of (x, y, z)
coordinates from a galaxy-formation simulation.

Implementation Details. We implemented all algo-
rithms in the FASTlib C++ library [21]. The code was
compiled with gcc version 4.1.2 with the -O2 flag. All ex-
periments were performed on a 3.0 GHz Intel Xeon processor
with 8GB of RAM running Linux.

Results. We attempted to run all the algorithms on all
the sets of data. However, the näıve experiments were lim-
ited by time, since the brute-force algorithm scales quadrat-
ically. Thus results are missing for the larger sets. The Ge-
oMST2 algorithm is limited by available memory. Although
the WSPD contains O(N) pairs of nodes, the constant factor
can be very large. The constant in the O(N) analysis scales
exponentially with the dimension [10], so the storage bottle-
neck becomes tighter with higher-dimensional data. Missing
timings for GeoMST2 indicate that the available memory
was exceeded. In our experiments, the Bentley-Friedman
algorithm is more efficient than either of these.

In both the synthetic data (Figure 2(a)) and the SDSS
data (Figure 2(b)), DualTreeBoruvka on a kd-tree is the
fastest method, by a factor of 2.8 and 4.6 over the Bentley-
Freidman method, respectively. On both figures, we plot the
slope of the predicted N log N performance, scaled to align
with the timings for our method.
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(a) Three-dimensional data generated from a
mixture of gaussians.
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(b) Four-dimensional SDSS spectra.

Figure 2: EMST computation times on log-log scale.
All timings are in seconds.

N dim DTB kd DTB cover BF [5]
40,000 3840 45825.18 15791.37 45780.43

1,000,000 3 17.39 333.45 42.54

Table 1: Comparison of DualTreeBoruvka and
Bentley-Friedman timings. Timings are in seconds.

Our results also consider dimensionality of the data. In
the three- and four-dimensional data given in figure 2, the
kd-tree based DualTreeBoruvka is fastest. Unlike most
EMST algorithms, our method can also efficiently handle
high-dimensional data, as shown in table 1. For the high-
dimensional SDSS data, the two methods using kd-trees re-
quire roughly the same time. DualTreeBoruvka on a
cover tree, however, is faster by a factor of 2.9.

7. CONCLUSION
We presented a new algorithm for the EMST problem,

DualTreeBoruvka. We also present the first adaptive
analysis of this long-standing problem. Combining these,
we obtain the tightest runtime bound to-date for computing
the EMST - O(N log N α(N)) ≈ O(N log N) - which is sep-
arated from the best lower bound only by the overwhelm-
ingly slowly-growing function α(N) ≈ O(1). We leave for
future work whether our bound is optimal or if a rigorous
O(N log N) algorithm can be shown. Our analysis is also the
first to avoid explicit (and exponential) dependence on the

dimension of the input. We demonstrate the practical utility
of our method for astronomical problems with experiments
on data from the Sloan Digital Sky Survey and simulations
of galaxy formulation. Comparison against algorithms in the
literature shows our method to be the considerably faster on
these sets. These experiments also support our theoretical
analysis and demonstrate the applicability of our algorithm
to both low- and high-dimensional data.
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