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Abstract

MLPACK is a new, state-of-the-art, scalable C++ machine learning library, which
will be released in early December 2011. Its aim is to make large-scale machine
learning possible for novice users by means of a simple, consistent API, while si-
multaneously exploiting C++ language features to provide maximum performance
and maximum flexibility for expert users. MLPACK provides many cutting-edge
algorithms, including—but not limited to—tree-based k-nearest-neighbors, fast
hierarchical clustering, MVU (maximum variance unfolding) with LRSDP, RAD-
ICAL (ICA), and HMMs. Each of these algorithms is highly flexible and con-
figurable, and all of them can be configured to use sparse matrices for datasets.
Benchmarks are shown to prove that MLPACK scales more effectively than com-
peting toolkits. Future plans for MLPACK include support for parallel algorithms,
support for disk-based datasets, as well as the implementation of a large collec-
tion of cutting-edge algorithms. More information on MLPACK is available at the
project’s website, which is located at http://www.mlpack.org.

1 Introduction and Goals

While there are many machine learning libraries available to the public for an assortment of machine
learning tasks, there are very few libraries targeted at the average user that focus on scalability. For
instance, the popular WEKA toolkit [7] focuses on ease of use but does not scale well. On the other
end of the continuum, the focus of the distributed Apache Mahout [12] library is scalability using
larger, more overhead-intensive setups such as clusters and powerful servers; the average user is
unlikely to have this. In addition, many other libraries implement only a few methods; for instance,
libsvm [3] and the Tilburg Memory-Based Learner (TiMBL) [5] are highly capable and scalable
software but each only implements one method. A user must learn a new API for each method.

MLPACK, which is meant to be the machine learning analog to the general-purpose LAPACK linear
algebra library, aims to bridge the gap between scalability and ease of use. The library is written
in C++ using the Armadillo matrix library [10]. MLPACK uses templated-based optimization tech-
niques to eliminate unnecessary copying of datasets and optimize mathematical expressions in ways
the compiler’s optimizer cannot. In addition, MLPACK exploits the generic programming features
of C++. This allows a user to easily customize machine learning methods to their own purposes
without incurring any performance penalty. To our knowledge, MLPACK is the only machine learn-
ing library to exploit these techniques to their full potential.



In addition, the consistent, intuitive interface of MLPACK minimizes the learning time necessary for
either an undergraduate student or a machine learning expert. Unlike many other scientific software
packages, complete and comprehensible documentation is a high priority for MLPACK, and each
method that MLPACK implements provides detailed reference.

The development team of MLPACK strives to balance four overarching goals in the design of the
library:

e Implement scalable, fast machine learning algorithms
e Design an intuitive, consistent, and simple API for users who are not C++ gurus
e Implement as large a collection as possible of machine learning methods

e Provide cutting-edge machine learning algorithms that no other library does

This paper is meant to serve as a quick introduction to the features MLPACK provides, its simple
and extensible API, and the superior performance and scalability of the library. The ways in which
each of the four design goals are achieved are analyzed.

2 Scalable, Fast Machine Learning Algorithms

The most important feature of MLPACK is the scalability of the machine learning algorithms it im-
plements; this scalability is achieved mostly by the use of C++. C++ is not the most popular choice
of language for most machine learning implementations; instead, researchers generally choose sim-
pler languages such as MATLAB, C, FORTRAN, and sometimes Java or Python. While each of
those languages is modern and supports modern featuers, none are as complex as C++.

C++ is a highly complex language which requires training and expertise to fully understand and
utilize. Unlike most other languages used in machine learning, C++ supports generic programming
via templates. Although Java also supports generics, the C++ template mechanism is far more
extensible and useful.

In the late 1990s and early 2000s, shortly after the introduction of templates into C++, the field
of template metaprogramming emerged, culminating, in part, with Alexandrescu’s seminal Modern
C++ Design [2] in 2001. The main appeal of template metaprogramming is the ability to move parts
of computation that are regularly performed at runtime into compile-time. However, this concept
has not gained significant traction in the field of machine learning software, even ten years after the
introduction of template metaprogramming.

MLPACK'’s underlying matrix library, Armadillo, uses lazy evaluation to avoid both unnecessary
copies and unnecessary operations [10]. To illustrate this, consider the following very simple ex-
pression (assuming x, vy, z, and w are square matrices of the same size):

w=x+ (y + z)

If implemented as written in MATLAB, this will first compute (y + z), store it in a temporary
matrix, then add x to the temporary matrix and store the result in w. Clearly, for massive datasets,
the creation of an unnecessary temporary matrix causes both memory and performance issues. The
Armadillo library, relying on lazy evaluation using template metaprogramming, is able to avoid
this entirely by optimizing operation performance at compile-time. The vast majority of machine
learning libraries do not support this type of compile-time optimization.

Another drawback of most commonly-used scientific languages is suboptimal support of user-
defined metrics and kernels. For instance, Shogun [11] provides arbitrary distance metric support
via inheritance and virtual functions, but the use of virtual functions or other dynamic bindings in-
curs a performance penalty for the lookup of the dynamic binding [8]. MLPACK, instead, uses static
polymorphism—an extension of the Curiously Recurring Template Pattern [4]—as well as policy-
based design [2]. The performance penalty of the dynamic binding is eliminated by resolving the
binding entirely at compilation time.

The use of policy-based design allows incredible flexibility. MLPACK supports entirely arbitrary,
user-defined distance metrics or kernel functions. More importantly, through this paradigm ML-



PACK is able to support the use of both dense and sparse matrices anywhere in each of the algorithms
it implements. No other machine learning library to date provides this functionality.

3 A Consistent, Simple API

The use of complex template techniques in C++ generally incurs complex and unwieldy APIs, forc-
ing a user to read through countless pages of documentation to understand how to use the code.
However, because a goal of MLPACK is to provide an intuitive and simple API, these issues can
be avoided. This is possible, in part, by providing default parameters which can be left unspecified.
For instance, the Neighborhood Components Analysis metric learning method can be created very
easily (assuming data is an Armadillo matrix containing the dataset):

NCA nca (data);

However, an expert user could run NCA in a non-Euclidean metric space, using a custom optimizer,
on sparse double-precision floating point input data:

NCA<ACustomMetric, ACustomOptimizer, arma::SpMat<double> > nca(data);

Each MLPACK method is designed similarly, and importantly, each MLPACK method has a consis-
tent APL. A user can move from one method to another, expecting to interact with the new method
in the same way. This consistent API is a main reason that MLPACK’s API can be called intuitive.

In addition, stringent documentation is a key requirement for an algorithm to be accepted into ML-
PACK. This comprehensive documentation allows a novice user to simply run the basic algorithm
and an expert user to customize the algorithm to their specific needs.

4 A Large Collection of Machine Learning Methods

MLPACK implements commonly used machine learning algorithms as well as algorithms for which
no other implementation is available. It provides a set of core routines, including several optimizers,
such as L-BFGS and the Nelder-Mead method. MLPACK also contains a strong set of tree-building
and tree query routines, making MLPACK’s implementations of neighbor-search problems and gen-
eral n-body problems [6] very powerful. As mentioned earlier, MLPACK even supports sparse
matrices for any of its methods through the policy-based design C++ paradigm [2]; this innovation
is novel to the machine learning software community.

Each machine learning method provides a well-documented command-line interface for any re-
searcher who does not wish to extend MLPACK’s code but instead use the provided methods. By
using the library in this manner, a user of MLPACK does not even need to know C++ or any pro-
gramming language. On the other hand, for an expert researcher, MLPACK allows arbitrary distance
metrics and kernel functions for all of its methods, among its many customizable features.

Below is a list of the machine learning methods which will be available, along with some key features
for each of them, at the time of the library’s release in December 2011:

e Fast Hierarchical Clustering (Euclidean Minimum Spanning Trees)
e Gaussian Mixture Models (trained via EM)

e Hidden Markov Models (training, prediction, and classification)
e Kernel Principal Components Analysis

e K-Means clustering

o L. ARS/Lasso Regression

e | east-squares Linear Regression

e Maximum Variance Unfolding (using LRSDP)

e Naive Bayes Classifier

e Neighborhood Components Analysis (using LRSDP)

o RADICAL (Robust, Accurate, Direct ICA alLgorithm)



Dataset MLPACK WEKA Shogun MATLAB mlpy sklearn

1000x10 0.078s 0.271s 0.132s 0.166s 0.179s 0.341s
3162x10 0.267s 1.065s 1.093s 0.796s 0.974s 0.916s
10000x10 1.332s 4.734s 11.890s 4.026s 9.961s 3.549s
31622x10 7.270s 27.890s 120.320s 17.631s 116.965s 15.213s

100000x10 47.350s | 171.313s 1357.910s | 110.570s 1621.045s 75.039s
316227x10 253.541s | 789.317s | > 9000.000s | 588.967s | > 9000.000s | 363.691s

1000000x10 | 1423.949s | failure failure 2603.316s | > 9000.000s | 1550.720s
10000x31 6.932s 45.240s 13.980s 26.990s 13.688s 45.582s
10000x100 18.075s | 192.548s 27.251s 82.214s 29.039s | 198.953s
10000x316 53.500s | 2957.581s 65.020s | 245.471s 69.850s | 732.694s
10000x1000 | 174.704s | failure 178.715s | 750.660s 201.081s | 2533.120s

Table 1: £-NN benchmarks.

e Tree-based k-nearest-neighbors search and classifier

e Tree-based range search

In addition, many methods are currently in development and will be released in the future.

5 Benchmarks

To demonstrate the efficiency of the algorithms implemented in MLPACK, the running time of k-
nearest-neighbors is compared with other libraries. Only one algorithm is tested for the sake of
conciseness, but when the library is released, full benchmarks for each algorithm will be available.
The benchmarks shown here were run on a modest consumer-grade workstation containing an AMD
Phenom II X6 1100T processor clocked at 3.3 GHz and 8 GB of RAM.

The libraries being compared are MLPACK, WEKA [7], the MATLAB knnsearch () routine, the
Shogun Toolkit [11], the Python package mlpy [1], and the Python package scikit.learn (‘sklearn’)
[9]. Several randomly generated, uniformly distributed datasets of varying sizes were used for this
benchmark. The computation time of k-NN with & = 5 for each library and each dataset size is
given in Table 1. The listed computational time includes the time taken to load the datasets (CSV)
and save the results.

MLPACK is faster than every competitor for every case tested here. It is clear that MLPACK scales
more gracefully and effectively than any of its competitors for k-nearest-neighbors. Benchmarks for
other methods (which cannot be shown here due to space constraints) give similar results.

6 Future Plans

In spite of the favorable benchmarks shown here, these are by no means the best benchmarks ML-
PACK will ever achieve. MLPACK has an active development team of seven core developers, as
well as several contributors. Because MLPACK is an open-source project, contributions from any
outside source are welcome — as well as feature requests and bug reports. This means that the perfor-
mance of MLPACK algorithms, as well as the extensibility of MLPACK algorithms and the breadth
of algorithms MLPACK implements, are all certain to improve.

For the first release of MLPACK, parallelism was unable to be implemented elegantly, but experi-
mental parallel MLPACK code is currently in testing. Work is currently ongoing into how to imple-
ment parallelism while both maintaining a simple API and not incurring large, reverse-incompatible
API changes. Parallel algorithms are expected to be available in the next major release of MLPACK.
Other useful planned features include the ability to use on-disk databases, instead of requiring the
dataset to be loaded entirely into RAM.

Many additional algorithms are either planned or in development for MLPACK and will be re-
leased in the future. These algorithms include dimensionality reduction techniques such as linear
discriminant analysis (LDA) and locally linear embedding (LLE), source separation methods such



as non-negative matrix factorization (NMF) and information maximization (Infomax) ICA, kernel
density estimation methods, and a variety of other algorithms.

7 Conclusion

We have shown that MLPACK is a state-of-the-art scalable C++ machine learning library which
leverages the powerful C++ concept of generic programming to give excellent performance on large
datasets. The four goals which MLPACK development adheres to requires that in addition to being
very fast, the code itself must be easy for a novice user to understand and use.

MLPACK supports a wide range of machine learning methods, each of which is highly configurable.
For instance, a user can write an arbitrary distance metric or kernel function and use it with MLPACK
methods. A user can also choose to use sparse or dense matrices for their datasets at will, which is
flexibility other machine learning libraries do not offer.

In the future, MLPACK aims to support parallelism while maintaining a simple API, as well as
publishing new state-of-the-art machine learning algorithms regularly. Effective interaction with
the machine learning community through the channels of MLPACK’s open-source development
model, found at http://www.mlpack.org, enables the library to be shaped to the needs of the
community, allowing MLPACK to be an effective tool in advancing the field of machine learning.
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