
Journal of Machine Learning Research 14 (2013) 801-805 Submitted 9/12; Revised 2/13; Published 3/13

MLPACK: A Scalable C++ Machine Learning Library

Ryan R. Curtin RYAN.CURTIN@CC.GATECH.EDU

James R. Cline JAMES.CLINE@GATECH.EDU

N. P. Slagle NPSLAGLE@GMAIL.COM

William B. March MARCH@GATECH.EDU

Parikshit Ram P.RAM@GATECH.EDU

Nishant A. Mehta NICHE@CC.GATECH.EDU

Alexander G. Gray AGRAY@CC.GATECH.EDU

College of Computing

Georgia Institute of Technology

Atlanta, GA 30332

Editor: Balázs Kégl

Abstract

MLPACK is a state-of-the-art, scalable, multi-platform C++ machine learning library released
in late 2011 offering both a simple, consistent API accessible to novice users and high perfor-
mance and flexibility to expert users by leveraging modern features of C++. MLPACK pro-
vides cutting-edge algorithms whose benchmarks exhibit far better performance than other lead-
ing machine learning libraries. MLPACK version 1.0.3, licensed under the LGPL, is available at
http://www.mlpack.org.

Keywords: C++, dual-tree algorithms, machine learning software, open source software, large-
scale learning

1. Introduction and Goals

Though several machine learning libraries are freely available online, few, if any, offer efficient
algorithms to the average user. For instance, the popular Weka toolkit (Hall et al., 2009) emphasizes
ease of use but scales poorly; the distributed Apache Mahout library offers scalability at a cost of
higher overhead (such as clusters and powerful servers often unavailable to the average user). Also,
few libraries offer breadth; for instance, libsvm (Chang and Lin, 2011) and the Tilburg Memory-
Based Learner (TiMBL) are highly scalable and accessible yet each offer only a single method.

MLPACK, intended to be the machine learning analog to the general-purpose LAPACK linear
algebra library, aims to combine efficiency and accessibility. Written in C++, MLPACK uses the
highly efficient Armadillo matrix library (Sanderson, 2010) and is freely available under the GNU
Lesser General Public License (LGPL). Through the use of C++ templates, MLPACK both elimi-
nates unnecessary copying of data sets and performs expression optimizations unavailable in other
languages. Also, MLPACK is, to our knowledge, unique among existing libraries in using generic
programming features of C++ to allow customization of the available machine learning methods
without incurring performance penalties.

c©2013 Ryan R. Curtin, James R. Cline, N. P. Slagle, William B. March, Parikshit Ram, Nishant A. Mehta and Alexander G. Gray.



CURTIN, CLINE, SLAGLE, MARCH, RAM, MEHTA AND GRAY

In addition, users ranging from students to experts should find the consistent, intuitive interface
of MLPACK to be highly accessible. Finally, the source code provides references and comprehen-
sive documentation.

Four major goals of the development team of MLPACK are

• to implement scalable, fast machine learning algorithms,
• to design an intuitive, consistent, and simple API for non-expert users,
• to implement a variety of machine learning methods, and
• to provide cutting-edge machine learning algorithms unavailable elsewhere.

This paper offers both an introduction to the simple and extensible API and a glimpse of the
superior performance of the library.

2. Package Overview

Each algorithm available in MLPACK features both a set of C++ library functions and a standalone
command-line executable. Version 1.0.3 includes the following methods:

• nearest/furthest neighbor search with cover trees or kd-trees (k-nearest-neighbors)
• range search with cover trees or kd-trees
• Gaussian mixture models (GMMs)
• hidden Markov models (HMMs)
• LARS / Lasso regression
• k-means clustering
• fast hierarchical clustering (Euclidean MST calculation)1 (March et al., 2010)
• kernel PCA (and regular PCA)
• local coordinate coding1 (Yu et al., 2009)
• sparse coding using dictionary learning
• RADICAL (Robust, Accurate, Direct ICA aLgorithm) (Learned-Miller and Fisher, 2003)
• maximum variance unfolding (MVU) via LRSDP1 (Burer and Monteiro, 2003)
• the naive Bayes classifier
• density estimation trees1 (Ram and Gray, 2011)

The development team manages MLPACK with Subversion and the Trac bug reporting system,
allowing easy downloads and simple bug reporting. The entire development process is transparent,
so any interested user can easily contribute to the library. MLPACK can compile from source on
Linux, Mac OS, and Windows; currently, different Linux distributions are reviewing MLPACK for
inclusion in their package managers, which will allow users to install MLPACK without needing to
compile from source.

3. A Consistent, Simple API

MLPACK features a highly accessible API, both in style (such as consistent naming schemes and
coding conventions) and ease of use (such as templated defaults), as well as stringent documentation
standards. Consequently, a new user can execute algorithms out-of-the-box often with little or no
adjustment to parameters, while the seasoned expert can expect extreme flexibility in algorithmic

1. This algorithm is not available in any other comparable software package.

802



MLPACK: A SCALABLE C++ MACHINE LEARNING LIBRARY

Data Set MLPACK Weka Shogun MATLAB mlpy sklearn
wine 0.0003 0.0621 0.0277 0.0021 0.0025 0.0008
cloud 0.0069 0.1174 0.5000 0.0210 0.3520 0.0192
wine-qual 0.0290 0.8868 4.3617 0.6465 4.0431 0.1668
isolet 13.0197 213.4735 37.6190 46.9518 52.0437 46.8016
miniboone 20.2045 216.1469 2351.4637 1088.1127 3219.2696 714.2385
yp-msd 5430.0478 >9000.0000 >9000.0000 >9000.0000 >9000.0000 >9000.0000
corel 4.9716 14.4264 555.9600 60.8496 209.5056 160.4597
covtype 14.3449 45.9912 >9000.0000 >9000.0000 >9000.0000 651.6259
mnist 2719.8087 >9000.0000 3536.4477 4838.6747 5192.3586 5363.9650
randu 1020.9142 2665.0921 >9000.0000 1679.2893 >9000.0000 8780.0176

Table 1: k-NN benchmarks (in seconds).

Data Set wine cloud wine-qual isolet miniboone

UCI Name Wine Cloud Wine Quality ISOLET MiniBooNE
Size 178x13 2048x10 6497x11 7797x617 130064x50

Data Set yp-msd corel covtype mnist randu

UCI Name YearPredictionMSD Corel Covertype N/A N/A

Size 515345x90 37749x32 581082x54 70000x784 1000000x10

Table 2: Benchmark data set sizes.

tuning. For example, the following line initializes an object which will perform the standard k-
means clustering in Euclidean space:

KMeans<> k();

However, an expert user could easily use the Manhattan distance, a different cluster initialization
policy, and allow empty clusters:

KMeans<ManhattanDistance, KMeansPlusPlusInitialization, AllowEmptyClusters> k();

Users can implement these custom classes in their code, then simply link against the MLPACK
library, requiring no modification within the MLPACK library. In addition to this flexibility, Ar-
madillo 3.4.0 includes sparse matrix support; sparse matrices can be used in place of dense matrices
for the appropriate MLPACK methods.

4. Benchmarks

To demonstrate the efficiency of the algorithms implemented in MLPACK, we present a comparison
of the running times of k-nearest-neighbors and the k-means clustering algorithm from MLPACK,
Weka (Hall et al., 2009), MATLAB, the Shogun Toolkit (Sonnenburg et al., 2010), mlpy (Albanese
et al., 2012), and scikit.learn (‘sklearn’) (Pedregosa et al., 2011), using a modest consumer-grade
workstation containing an AMD Phenom II X6 1100T processor clocked at 3.3 GHz and 8 GB of
RAM.

Eight data sets from the UCI data sets repository (Frank and Asuncion, 2010) are used; the
MNIST handwritten digit database is also used (‘mnist’) (LeCun et al., 2001), as well as a uniformly
distributed random data set (‘randu’). Information on the sizes of these ten data sets appears in Table
2. Data set loading time is not included in the benchmarks. Each test was run 5 times; the average
is shown in the results.

803



CURTIN, CLINE, SLAGLE, MARCH, RAM, MEHTA AND GRAY

Data Set Clusters MLPACK Shogun MATLAB sklearn
wine 3 0.0006 0.0073 0.0055 0.0064
cloud 5 0.0036 0.1240 0.0194 0.1753
wine-qual 7 0.0221 0.6030 0.0987 4.0407
isolet 26 4.9762 8.5093 54.7463 7.0902
miniboone 2 0.1853 8.0206 0.7221 memory

yp-msd 10 34.8223 135.8853 269.7302 memory

corel 10 0.4672 2.4237 1.6318 memory

covtype 7 13.5997 71.1283 54.9034 memory

mnist 10 80.2092 163.7513 133.9970 memory

randu 75 727.1498 7443.2675 3117.5177 memory

Table 3: k-means benchmarks (in seconds).

k-NN was run with each library on each data set, with k = 3. The results for each library and
each data set appears in Table 1. The k-means algorithm was run with the same starting centroids
for each library, and 1000 iterations maximum. The number of clusters k was chosen to reflect the
structure of the data set. Benchmarks for k-means are given in Table 3. Weka and mlpy are excluded
because they do not allow specification of the starting centroids. ‘memory’ indicates that the system
ran out of memory during the test.

MLPACK’s k-nearest neighbors and k-means are faster than the competitors in all test cases.
Benchmarks for other methods, omitted due to space constraints, also show similar speedups over
competing implementations.

5. Future Plans and Conclusion

The favorable benchmarks exhibited above are not necessarily the global optimum; MLPACK’s
active development team includes several core developers and many contributors. Because ML-
PACK is open-source, contributions from outsiders are welcome, including feature requests and
bug reports. Thus, the performance, extensibility, and breadth of algorithms within MLPACK are
all certain to improve.

The first releases of MLPACK lacked parallelism, but experimental parallel code using OpenMP
is currently in testing. This parallel support must maintain a simple API and avoid large, reverse-
incompatible API changes. Other useful planned features include using on-disk databases (rather
than requiring loading the data set entirely into RAM) and validation of saved models (such as trees
or distributions). Refactoring work continues on existing code, providing more flexible abstractions
and greater extensibility. Nevertheless, MLPACK’s future growth will mostly be the addition of new
machine learning methods; since the original release (1.0.0), there are five new methods. Forthcom-
ing methods include approximate nearest neighbors, locality-sensitive hashing (LSH), and support
vector machines (SVMs).

In conclusion, we have shown that MLPACK is a state-of-the-art C++ machine learning library
which leverages the powerful C++ concept of generic programming to give excellent performance
on large data sets.

Acknowledgments

A full list of developers and researchers (other than the authors) who have contributed significantly
to MLPACK are Sterling Peet, Vlad Grantcharov, Ajinkya Kale, Dongryeol Lee, Chip Mappus, Hua
Ouyang, Long Quoc Tran, Noah Kauffman, Rajendran Mohan, and Trironk Kiatkungwanglai.

804



MLPACK: A SCALABLE C++ MACHINE LEARNING LIBRARY

References

Davide Albanese, Roberto Visintainer, Stefano Merler, Samantha Riccadonna, Giuseppe Jurman,
and Cesare Furlanello. mlpy: Machine Learning PYThon. 2012. Project homepage at
http://mlpy.fbk.eu/.

Samuel Burer and Renato D. C. Monteiro. A nonlinear programming algorithm for solving semidef-
inite programs via low-rank factorization. Mathematical Programming, 95(2):329–357, 2003.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Andrew J. Frank and Arthur Asuncion. UCI machine learning repository
[http://archive.ics.uci.edu/ml], 2010. University of California, Irvine, School of
Information and Computer Sciences.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Wit-
ten. The WEKA data mining software: An update. SIGKDD Explorations, 11(1), 2009.

Erik G. Learned-Miller and John W. Fisher. ICA using spacings estimates of entropy. Journal of

Machine Learning Research, 4:1271–1295, December 2003. ISSN 1532-4435.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. In Intelligent Signal Processing, pages 306–351. IEEE Press, 2001.

William B. March, Parikshit Ram, and Alexander G. Gray. Fast Euclidean minimum spanning tree:
algorithm, analysis, and applications. In Proceedings of the 16th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’10, pages 603–612, 2010.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:
2825–2830, 2011.

Parikshit Ram and Alexander G. Gray. Density estimation trees. In Proceedings of the 17th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11, pages
627–635, New York, NY, USA, 2011. ACM.

Conrad Sanderson. Armadillo: An open source C++ linear algebra library for fast prototyping and
computationally intensive experiments. Technical report, NICTA, 2010.

Soeren Sonnenburg, Gunnar Raetsch, Sebastian Henschel, Christian Widmer, Jonas Behr, Alexan-
der Zien, Fabio de Bona, Alexander Binder, Christian Gehl, and Vojtech Franc. The SHOGUN
machine learning toolbox. Journal of Machine Learning Research, 11:1799–1802, June 2010.

Kai Yu, Tong Zhang, and Yihong Gong. Nonlinear learning using local coordinate coding. In
Advances in Neural Information Processing Systems 22 (NIPS), pages 2223–2231, 2009.

805


