The empty loss does nothing, letting the user calculate the loss outside the model.
More...
|
| EmptyLoss () |
| Create the EmptyLoss object. More...
|
|
template |
void | Backward (const InputType &input, const TargetType &target, OutputType &output) |
| Ordinary feed backward pass of a neural network. More...
|
|
template |
double | Forward (const InputType &input, const TargetType &target) |
| Computes the Empty loss function. More...
|
|
template
class mlpack::ann::EmptyLoss< InputDataType, OutputDataType >
The empty loss does nothing, letting the user calculate the loss outside the model.
- Template Parameters
-
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
Definition at line 35 of file empty_loss.hpp.
◆ EmptyLoss()
◆ Backward()
void Backward |
( |
const InputType & |
input, |
|
|
const TargetType & |
target, |
|
|
OutputType & |
output |
|
) |
| |
Ordinary feed backward pass of a neural network.
- Parameters
-
input | The propagated input activation. |
target | The target vector. |
output | The calculated error. |
◆ Forward()
double Forward |
( |
const InputType & |
input, |
|
|
const TargetType & |
target |
|
) |
| |
Computes the Empty loss function.
- Parameters
-
input | Input data used for evaluating the specified function. |
target | The target vector. |
The documentation for this class was generated from the following file:
- /home/jenkins-mlpack/mlpack.org/_src/mlpack-3.4.2/src/mlpack/methods/ann/loss_functions/empty_loss.hpp