|
| LSTM () |
| Create the LSTM object. More...
|
|
| LSTM (const size_t inSize, const size_t outSize, const size_t rho=std::numeric_limits< size_t >::max()) |
| Create the LSTM layer object using the specified parameters. More...
|
|
template |
void | Backward (const InputType &input, const ErrorType &gy, GradientType &g) |
| Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More...
|
|
OutputDataType const & | Delta () const |
| Get the delta. More...
|
|
OutputDataType & | Delta () |
| Modify the delta. More...
|
|
template |
void | Forward (const InputType &input, OutputType &output) |
| Ordinary feed-forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More...
|
|
template |
void | Forward (const InputType &input, OutputType &output, OutputType &cellState, bool useCellState=false) |
| Ordinary feed-forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More...
|
|
template |
void | Gradient (const InputType &input, const ErrorType &error, GradientType &gradient) |
|
OutputDataType const & | Gradient () const |
| Get the gradient. More...
|
|
OutputDataType & | Gradient () |
| Modify the gradient. More...
|
|
size_t | InSize () const |
| Get the number of input units. More...
|
|
OutputDataType const & | OutputParameter () const |
| Get the output parameter. More...
|
|
OutputDataType & | OutputParameter () |
| Modify the output parameter. More...
|
|
size_t | OutSize () const |
| Get the number of output units. More...
|
|
OutputDataType const & | Parameters () const |
| Get the parameters. More...
|
|
OutputDataType & | Parameters () |
| Modify the parameters. More...
|
|
void | Reset () |
|
void | ResetCell (const size_t size) |
|
size_t | Rho () const |
| Get the maximum number of steps to backpropagate through time (BPTT). More...
|
|
size_t & | Rho () |
| Modify the maximum number of steps to backpropagate through time (BPTT). More...
|
|
template |
void | serialize (Archive &ar, const unsigned int) |
| Serialize the layer. More...
|
|
template
class mlpack::ann::LSTM< InputDataType, OutputDataType >
Implementation of the LSTM module class.
The implementation corresponds to the following algorithm:
Note that if an LSTM layer is desired as the first layer of a neural network, an IdentityLayer should be added to the network as the first layer, and then the LSTM layer should be added.
For more information, see the following.
@article{Graves2013,
author = {Alex Graves and Abdel{-}rahman Mohamed and Geoffrey E. Hinton},
title = {Speech Recognition with Deep Recurrent Neural Networks},
journal = CoRR},
year = {2013},
url = {http:
}
- See also
- FastLSTM for a faster LSTM version which combines the calculation of the input, forget, output gates and hidden state in a single step.
- Template Parameters
-
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
Definition at line 76 of file layer_types.hpp.