Downloading and Installing mlpack
    
    Prebuilt mlpack packages are available for most operating systems;
    these packages may not be the latest version,
    so if you are encountering issues,
    use the official source release.
    
Source download and build reference
    
    C++ system-wide package installation
    
      - Debian/Ubuntu: - sudo apt-get install libmlpack-dev
- Red Hat/Fedora: - sudo dnf install mlpack-devel
- Arch Linux: - sudo pacman -S mlpack
- macOS (Homebrew): - brew install mlpack
- macOS (MacPorts): - sudo port install mlpack
- Windows (vcpkg): - vcpkg install mlpack
- Windows MSI installer: mlpack-4.6.2.msi
Language-specific installation
    
      - Python (pip): - pip install mlpack
- Python (conda): - conda install -c conda-forge mlpack
- Julia: - import Pkg; Pkg.add("mlpack");
- R: - install.packages("mlpack")
- Go: - go get -u -d mlpack.org/v1/mlpack
Ready-to-use cloud images
    
    Command-line program installation
    
      - Debian/Ubuntu: - sudo apt-get install mlpack-bin
- Red Hat/Fedora: - sudo dnf install mlpack-bin
- Arch Linux: - sudo pacman -S mlpack
- macOS (Homebrew): - brew install mlpack
- macOS (MacPorts): - sudo port install mlpack
- Windows (vcpkg): - vcpkg install mlpack
- Windows MSI installer: mlpack-4.6.2.msi
Quickstart: Using mlpack
    Once mlpack is installed, you can go through the quickstart tutorials:
    
    You can also look at the 
examples repository for fully
    working mlpack data science pipelines and applications.
    
Further documentation
    Once mlpack is installed and working, the reference documentation links
    below can be helpful for building mlpack applications: