π LocalCoordinateCoding
The LocalCoordinateCoding class implements local coordinate coding, a
variation of sparse coding with dictionary learning.  Local
coordinate coding is a form of representation learning, and can be used to
represent each point in a dataset as a linear combination of a few nearby
atoms in the learned dictionary.
Simple usage example:
// Create a random dataset with 100 points in 40 dimensions, and then a random
// test dataset with 50 points.
arma::mat data(40, 100, arma::fill::randn);
arma::mat testData(40, 50, arma::fill::randn);
// Perform local coordinate coding with 20 atoms and an L1 penalty of 0.1.
mlpack::LocalCoordinateCoding lcc(20, 0.1); // Step 1: create object.
double objective = lcc.Train(data);         // Step 2: learn dictionary.
arma::mat codes;
lcc.Encode(testData, codes);                // Step 3: encode new data.
// Print some information about the test encoding.
std::cout << "Average density of encoded test data: "
    << 100.0 * arma::mean(arma::sum(codes != 0)) / codes.n_rows << "\%."
    << std::endl;
Quick links:
- Constructors: create LocalCoordinateCodingobjects.
- Train(): train model (learn dictionary).
- Encode(): encode points with a trained model.
- Other functionality for loading, saving, and inspecting.
- Examples of simple usage and links to detailed example projects.
- Template parameters for advanced functionality: different element types and dictionary initialization strategies.
See also:
- SparseCoding
- LARS(used internally by- LocalCoordinateCoding)
- mlpack transformations
- Sparse dictionary learning on Wikipedia
- Nonlinear learning using local coordinate coding (pdf)
π Constructors
- lcc = LocalCoordinateCoding()
- lcc = LocalCoordinateCoding(atoms=0, lambda=0.0, maxIter=0, tol=0.01)- Create a LocalCoordinateCodingobject without learning a dictionary on data.
- If atomsis set to0(the default), it will need to be set to a value greater than0beforeTrain()is called (lcc.Atoms() = atomscan be used for this).
 
- Create a 
- lcc = LocalCoordinateCoding(data, atoms, lambda=0.0, maxIter=0, tol=0.01)- Create a LocalCoordinateCodingobject and train the dictionary on the givendata.
- The dictionary will contain atomselements.
 
- Create a 
- lcc = LocalCoordinateCoding(data, atoms, lambda, maxIter, tol, initializer)- Advanced constructor: create a LocalCoordinateCodingobject that will use a custom dictionary initializer and train on the givendata.
- The dictionary will contain atomselements.
- initializerwill be used to initialize the dictionary; see Advanced Functionality: Different Dictionary Initialization Strategies for details.
 
- Advanced constructor: create a 
Constructor Parameters:
| name | type | description | default | 
|---|---|---|---|
| data | arma::mat | Column-major training matrix. | (N/A) | 
| atoms | size_t | Number of atoms in dictionary. | (N/A) | 
| lambda | double | L1 regularization penalty.  Used in both Train()andEncode()steps. | 0.0 | 
| maxIter | size_t | Maximum number of iterations for dictionary learning. 0means no limit. | 0 | 
| tol | double | Objective function tolerance for terminating dictionary learning. | 0.01 | 
As an alternative to passing atoms, lambda, maxIter, or tol, these can
be set with a standalone method.  The following functions can be used before
calling Train():
- 
    lcc.Atoms() = a;will set the number of atoms to use in the dictionary toa. Changing this after callingTrain()will not make a difference to the dictionary size.
- 
    lcc.Lambda() = l;will set the L1 regularization penalty tol1. This can be set afterTrain()to force sparser encodings whenEncode()is called.
- 
    lcc.MaxIterations() = m;will set the maximum number of iterations for dictionary learning tom.0means that the algorithm will run until convergence.
- 
    lcc.Tolerance() = t;will set the objective tolerance for convergence of the dictionary learning algorithm tot.
Caveats:
- 
    Larger settings of atoms(i.e. larger dictionary sizes) will be able to more accurately represent the data, but may take longer to learn.
- 
    Larger values of lambdawill cause the model to use sparser encodings for data (e.g. fewer nearby anchor points) whenTrain()andEncode()are called, but whenlambdais too large, the codings may be inaccurate representations of the original points.
- 
    If lambdais set too large, encodings may be empty (e.g. all zeros).
- 
    Training is not incremental; a second call to Train()will reinitialize the dictionary and restart the learning process.
π Training
If training the dictionary is not done as part of the constructor call, it can
be done with one of the following versions of the Train() member function:
- lcc.Train(data)
- lcc.Train(data, initializer)- Train the local coordinate coding dictionary on the given data.
- Optionally, use the given initializerto initialize the dictionary (seeDictionaryInitializerfor more details).
 
- Train the local coordinate coding dictionary on the given 
π Encoding
Once a LocalCoordinateCoding model has a trained dictionary, the Encode()
member function can be used to encode new data points.
- lcc.Encode(data, codes)- Encode data(a column-major data matrix) as a sparse set of local atoms of the dictionary, storing the result incodes.
- Both dataandcodesshould be the same matrix type (e.g.arma::mat); see Different Element Types for more details.
- codeswill be set to have- atomsrows and- data.n_colscolumns.
- Column iofcodescorresponds to the coding of theiβth column ofdata. Each row represents the weight associated with each atom in the dictionary.
 
- Encode 
After encoding, the original data can be recovered (approximately) as
lcc.Dictionary() * data.
π Other Functionality
- 
    A LocalCoordinateCodingmodel can be serialized withdata::Save()anddata::Load().
- 
    lcc.Dictionary()will return anarma::mat&containing the dictionary matrix. The matrix hasdata.n_rowsrows andatomscolumns; each column corresponds to an atom in the dictionary. Dictionary atoms are regularized to be close to the manifold that data lie on.
- 
    double obj = lcc.Objective(data, codes)computes the local coordinate coding objective function on the givendataand encodingscodes. This can be used afterEncode()to test the quality of the encodings (a smaller objective is better).
π Simple Examples
See also the simple usage example for a trivial usage
of the LocalCoordinateCoding class.
Train a local coordinate coding model on the cloud dataset and print the reconstruction error.
// See https://datasets.mlpack.org/cloud.csv.
arma::mat dataset;
mlpack::data::Load("cloud.csv", dataset, true);
mlpack::LocalCoordinateCoding lcc;
lcc.Atoms() = 50;
lcc.Lambda() = 1e-5;
lcc.MaxIterations() = 25;
lcc.Train(dataset);
// Encode the training dataset.
arma::mat codes;
lcc.Encode(dataset, codes);
std::cout << "Input matrix size: " << dataset.n_rows << " x " << dataset.n_cols
    << "." << std::endl;
std::cout << "Codes matrix size: " << codes.n_rows << " x " << codes.n_cols
    << "." << std::endl;
// Reconstruct the original matrix.
arma::mat recon = lcc.Dictionary() * codes;
double error = std::sqrt(arma::norm(dataset - recon, "fro") / dataset.n_elem);
std::cout << "RMSE of reconstructed matrix: " << error << "." << std::endl;
Train a local coordinate coding model on the iris dataset and save the model to disk.
// See https://datasets.mlpack.org/iris.train.csv.
arma::mat dataset;
mlpack::data::Load("iris.train.csv", dataset, true);
// Train the model in the constructor.
mlpack::LocalCoordinateCoding lcc(dataset,
                                  10 /* atoms */,
                                  0.1 /* L1 penalty */);
// Save the model to disk.
mlpack::data::Save("lcc.bin", "lcc", lcc);
Train a local coordinate coding model on the satellite dataset, trying several different regularization parameters and checking the objective value on a held-out test dataset.
// See https://datasets.mlpack.org/satellite.train.csv.
arma::mat trainData;
mlpack::data::Load("satellite.train.csv", trainData, true);
// See https://datasets.mlpack.org/satellite.test.csv.
arma::mat testData;
mlpack::data::Load("satellite.test.csv", testData, true);
for (double lambdaPow = -6; lambdaPow <= -2; lambdaPow += 1)
{
  const double lambda = std::pow(10.0, lambdaPow);
  mlpack::LocalCoordinateCoding lcc(50 /* atoms */);
  lcc.Lambda() = lambda;
  lcc.MaxIterations() = 25; // Keep iterations low so this runs relatively fast.
  const double trainObj = lcc.Train(trainData);
  // Compute the objective on the test set.
  arma::mat codes;
  lcc.Encode(testData, codes);
  const double testObj = lcc.Objective(testData, codes);
  std::cout << "Lambda: " << std::setfill(' ') << std::setw(3) << lambda
      << "; ";
  std::cout << "training set objective: " << std::setw(6) << trainObj << "; ";
  std::cout << "test set objective: " << std::setw(6) << testObj << "."
      << std::endl;
}
π Advanced Functionality: Template Parameters
The LocalCoordinateCoding class has one class template parameter that can be
used for custom behavior.  The full signature of the class is:
LocalCoordinateCoding<MatType>
In addition, the constructors and Train()
functions have a template parameter DictionaryInitializer that can
be used for custom behavior.
- 
    MatType: the type of the matrix to use (e.g.arma::mat,arma::fmat, etc.). The givenMatTypemust support the Armadillo API and hold a floating-point element type (e.g.float,double, etc.).
- 
    DictionaryInitializer: the strategy used to initialize the dictionary. By default,DataDependentRandomInitializeris used.
MatType: Different Element Types
MatType specifies the type of matrix used for training data and internal
representation of the dictionary.  Any matrix type that implements the Armadillo
API can be used.  The example below trains a local coordinate coding model on
32-bit floating point data.
// See https://datasets.mlpack.org/cloud.csv.
arma::fmat dataset;
mlpack::data::Load("cloud.csv", dataset, true);
mlpack::LocalCoordinateCoding<arma::fmat> lcc;
lcc.Atoms() = 30;
lcc.Lambda() = 1e-5;
lcc.MaxIterations() = 100;
lcc.Train(dataset);
// Encode the training dataset.
arma::fmat codes;
lcc.Encode(dataset, codes);
std::cout << "Input matrix size: " << dataset.n_rows << " x " << dataset.n_cols
    << "." << std::endl;
std::cout << "Codes matrix size: " << codes.n_rows << " x " << codes.n_cols
    << "." << std::endl;
// Reconstruct the original matrix.
arma::fmat recon = lcc.Dictionary() * codes;
double error = std::sqrt(arma::norm(dataset - recon, "fro") / dataset.n_elem);
std::cout << "RMSE of reconstructed matrix: " << error << "." << std::endl;
DictionaryInitializer: Different Dictionary Initialization Strategies
The DictionaryInitializer template class specifies the strategy to be used to
initialize the dictionary when Train() is called.
- 
    The DataDependentRandomInitalizerclass (the default) uses the average of three random points in the dataset to initialize each atom in the dictionary.
- 
    The NothingInitializerclass does not modify the dictionary matrix in any way, and could be used either to set a specific dictionary before training withsc.Dictionary(), or to allow incremental training that does not modify the existing dictionary whenTrain()is called a second time.
- 
    The RandomInitializerclass initializes the dictionary by sampling norm-1 atoms from a normal distribution.
Note: none of the classes above have any members, and as such it is not
necessary to use the constructor or Train() variants that take an initialized
initializer object.  That would only be necessary for a custom
DictionaryInitializer class that stored internal members.
The example below uses NothingInitializer to set a specific initial
dictionary.
// See https://datasets.mlpack.org/satellite.train.csv.
arma::mat trainData;
mlpack::data::Load("satellite.train.csv", trainData, true);
const size_t atoms = 25;
const double lambda = 1e-5;
const size_t maxIterations = 50;
// Use a uniform random matrix as the initial dictionary.
arma::mat initialDictionary(trainData.n_rows, atoms, arma::fill::randu);
mlpack::LocalCoordinateCoding lcc(atoms, lambda, maxIterations);
lcc.Dictionary() = initialDictionary;
const double obj = lcc.Train<mlpack::NothingInitializer>(trainData);
std::cout << "Training set objective: " << obj << "." << std::endl;
- An entirely custom class can also be implemented.  The class must implement
one method, Initialize():
// You can use this as a starting point for implementation.
class CustomDictionaryInitializer
{
 public:
  // Initialize the dictionary to have the given number of atoms, given the
  // dataset.  MatType will be the matrix type used by the local coordinate
  // coding model (e.g. `arma::mat`, `arma::fmat`, etc.).
  template<typename MatType>
  void Initialize(const MatType& data,
                  const size_t atoms,
                  MatType& dictionary);
};