mlpack

🔗 NCA

The NCA class implements neighborhood components analysis, which can be used as both a linear dimensionality reduction technique and a distance learning technique (also called metric learning). Neighborhood components analysis finds a linear transformation of the dataset that improves k-nearest-neighbor classification performance.

Note that NCA is a computationally intensive technique (each optimization iteration takes time quadratic in the data size!), and may be slow to run even for datasets of only moderate size. See LMNN for another distance learning technique that scales better to larger datasets.

Simple usage example:

// Learn a distance metric that improves kNN classification performance.

// All data and labels are uniform random; 10 dimensional data, 5 classes.
// Replace with a data::Load() call or similar for a real application.
arma::mat dataset(10, 1000, arma::fill::randu); // 1000 points.
arma::Row<size_t> labels =
    arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 4));

mlpack::NCA nca;                              // Step 1: create object.
arma::mat distance;
nca.LearnDistance(dataset, labels, distance); // Step 2: learn distance.

// `distance` can now be used as a transformation matrix for the data.
arma::mat transformedData = distance * dataset;
// Or, you can create a MahalanobisDistance to evaluate points in the
// transformed dataset space.
arma::mat q = distance.t() * distance;
mlpack::MahalanobisDistance d(std::move(q));

std::cout << "Distance between points 0 and 1:" << std::endl;
std::cout << " - Before NCA: "
    << mlpack::EuclideanDistance::Evaluate(dataset.col(0), dataset.col(1))
    << "." << std::endl;
std::cout << " - After NCA:  "
    << d.Evaluate(dataset.col(0), dataset.col(1)) << "." << std::endl;

More examples...

See also:

🔗 Constructors



🔗 Learning Distances

Once an NCA object has been created, the LearnDistance() method can be used to learn a distance.

To use distance, either:

See the examples section for more details.

Caveat: NCA operates by repeatedly computing expressions of the form exp(-distance.Evaluate(data.col(i), data.col(j))) (that is, the exponential of the negative distance between two points). When distances are very large, this quantity underflows to 0 and results will not be reasonable.

LearnDistance() Parameters:

name type description  
data arma::mat Column-major training matrix.  
labels arma::Row<size_t> Training labels, between 0 and numClasses - 1 (inclusive). Should have length data.n_cols.  
distance arma::mat Output matrix to store transformation matrix representing learned distance.  
optimizer any ensmallen optimizer Instantiated ensmallen optimizer for differentiable functions or differentiable separable functions. ens::StandardSGD()
callbacks... any set of ensmallen callbacks Optional callbacks for the ensmallen optimizer, such as e.g. ens::ProgressBar(), ens::Report(), or others. (N/A)

Note: any matrix type can be used for data and distance, so long as that type implements the Armadillo API. So, e.g., arma::fmat can be used.

🔗 Other Functionality

🔗 Simple Examples

Learn a distance metric to improve classification performance on the iris dataset, and show improved performance when using NaiveBayesClassifier.

// See https://datasets.mlpack.org/iris.csv.
arma::mat dataset;
mlpack::data::Load("iris.csv", dataset, true);
// See https://datasets.mlpack.org/iris.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("iris.labels.csv", labels, true);

// Create an NCA object and learn a distance.
arma::mat distance;
mlpack::NCA nca;
nca.LearnDistance(dataset, labels, distance);

// The distance matrix has size equal to the dimensionality of the data.
std::cout << "Learned distance size: " << distance.n_rows << " x "
    << distance.n_cols << "." << std::endl;

// Learn a NaiveBayesClassifier model on the data and print the performance.
mlpack::NaiveBayesClassifier nbc1(dataset, labels, 3);
arma::Row<size_t> predictions;
nbc1.Classify(dataset, predictions);
std::cout << "Naive Bayes Classifier without NCA: "
    << arma::accu(labels == predictions) << " of " << labels.n_elem
    << " correct." << std::endl;

// Now transform the data and learn another NaiveBayesClassifier.
arma::mat transformedDataset = distance * dataset;
mlpack::NaiveBayesClassifier nbc2(transformedDataset, labels, 3);
nbc2.Classify(transformedDataset, predictions);
std::cout << "Naive Bayes Classifier with NCA:    "
    << arma::accu(labels == predictions) << " of " << labels.n_elem
    << " correct." << std::endl;

Learn a distance metric on the ionosphere dataset, using 32-bit floating point to represent the data and metric.

// See https://datasets.mlpack.org/ionosphere.csv.
arma::fmat dataset;
mlpack::data::Load("ionosphere.csv", dataset, true);

// The labels are the last row of the dataset.
arma::Row<size_t> labels =
    arma::conv_to<arma::Row<size_t>>::from(dataset.row(dataset.n_rows - 1));
dataset.shed_row(dataset.n_rows - 1);

// Create an NCA object and learn distance on float32 data.
// To keep computation time down, we use an instantiated optimizer that will
// only perform 10 epochs of training.  (In a real application you may want to
// train for longer!)
arma::fmat distance;
mlpack::NCA nca;

ens::StandardSGD opt;
opt.MaxIterations() = 10 * dataset.n_cols;
nca.LearnDistance(dataset, labels, distance, opt, ens::ProgressBar());

// We want to compute six quantities:
//
//  - Average distance to points of the same class before NCA.
//  - Average distance to points of the same class after NCA, using
//    MahalanobisDistance.
//  - Average distance to points of the same class after NCA, using the
//    transformed dataset.
//
//  - The same three quantities above, but for points of the other class.
//
// NCA should reduce the average distance to points in the same class, while
// increasing the average distance to points in other classes.
float distSums[6] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
size_t sameCount = 0;
arma::fmat q = distance.t() * distance;
mlpack::MahalanobisDistance md(std::move(q));
arma::fmat transformedDataset = distance * dataset;
for (size_t i = 1; i < dataset.n_cols; ++i)
{
  const double d1 = mlpack::EuclideanDistance::Evaluate(
      dataset.col(0), dataset.col(i));
  const double d2 = md.Evaluate(dataset.col(0), dataset.col(i));
  const double d3 = mlpack::EuclideanDistance::Evaluate(
      transformedDataset.col(0), transformedDataset.col(i));

  // Determine whether the point has the same label as point 0.
  if (labels[i] == labels[0])
  {
    distSums[0] += d1;
    distSums[1] += d2;
    distSums[2] += d3;
    ++sameCount;
  }
  else
  {
    distSums[3] += d1;
    distSums[4] += d2;
    distSums[5] += d3;
  }
}

// Turn the results into average distances across the class.
distSums[0] /= sameCount;
distSums[1] /= sameCount;
distSums[2] /= sameCount;
distSums[3] /= (dataset.n_cols - sameCount);
distSums[4] /= (dataset.n_cols - sameCount);
distSums[5] /= (dataset.n_cols - sameCount);

// Print the results.
std::cout << "Average distance between point 0 and other points of the same "
    << "class:" << std::endl;
std::cout << " - Before NCA:                           " << distSums[0] << "."
    << std::endl;
std::cout << " - After NCA (with MahalanobisDistance): " << distSums[1] << "."
    << std::endl;
std::cout << " - After NCA (with transformed dataset): " << distSums[2] << "."
    << std::endl;
std::cout << std::endl;

std::cout << "Average distance between point 0 and points of other classes: "
    << std::endl;
std::cout << " - Before NCA:                           " << distSums[3] << "."
    << std::endl;
std::cout << " - After NCA (with MahalanobisDistance): " << distSums[4] << "."
    << std::endl;
std::cout << " - After NCA (with transformed dataset): " << distSums[5] << "."
    << std::endl;
std::cout << std::endl;

std::cout << "Ratio of other-class to same-class distances:" << std::endl;
std::cout << "(We expect this to go up.)" << std::endl;
std::cout << " - Before NCA: " << (distSums[3] / distSums[0]) << "."
    << std::endl;
std::cout << " - After NCA:  " << (distSums[5] / distSums[2]) << "."
    << std::endl;

Learn a distance metric on the iris dataset, using the L-BFGS optimizer with callbacks.

// See https://datasets.mlpack.org/iris.csv.
arma::mat dataset;
mlpack::data::Load("iris.csv", dataset, true);
// See https://datasets.mlpack.org/iris.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("iris.labels.csv", labels, true);

// Learn a distance with ensmallen's L-BFGS optimizer.
ens::L_BFGS lbfgs;
lbfgs.NumBasis() = 5;
lbfgs.MaxIterations() = 1000;

arma::mat distance;
mlpack::NCA nca;

// Use a callback that prints a final optimization report.
nca.LearnDistance(dataset, labels, distance, lbfgs, ens::Report());

Learn a distance metric on the vehicle dataset, but instead of using the Euclidean distance as the underlying metric, use the Manhattan distance. This means that NCA is optimizing k-NN performance under the Manhattan distance, not under the Euclidean distance.

// See https://datasets.mlpack.org/vehicle.csv.
arma::mat dataset;
mlpack::data::Load("vehicle.csv", dataset, true);

// The labels are contained as the last row of the dataset.
arma::Row<size_t> labels =
    arma::conv_to<arma::Row<size_t>>::from(dataset.row(dataset.n_rows - 1));
dataset.shed_row(dataset.n_rows - 1);

// Because typical distances between points in the vehicle dataset are large,
// we will center the dataset and scale it to have points in the unit ball.
// (That is, all points will have values in each dimension between -1 and 1.)
// This means that the maximum pairwise distance is 2.
dataset.each_col() -= arma::mean(dataset, 1);
dataset /= arma::max(arma::max(arma::abs(dataset)));

// Create the NCA object and optimize.  Use Nesterov momentum SGD, printing a
// progress bar during optimization.
mlpack::NCA<mlpack::ManhattanDistance> nca;
arma::mat distance;
ens::NesterovMomentumSGD opt(0.01 /* step size */,
                             32 /* batch size */,
                             20 * dataset.n_cols /* 20 epochs */);
nca.LearnDistance(dataset, labels, distance, opt, ens::ProgressBar());

// Now inspect distances between points with the Euclidean distance and with the
// inner product distance.
arma::mat transformedDataset = distance * dataset;

// Points 0 and 1 have the same label (0).  See their original distance---with
// both the Euclidean and Manhattan distances---and their transformed distances.
// We expect these points to get closer together, in the Manhattan distance.
const double d1 = mlpack::ManhattanDistance::Evaluate(
    dataset.col(0), dataset.col(1));
const double d2 = mlpack::ManhattanDistance::Evaluate(
    transformedDataset.col(0), transformedDataset.col(1));

std::cout << "Distance between points 0 and 1 (same class):" << std::endl;
std::cout << " - Manhattan distance:" << std::endl;
std::cout << "   * Before NCA: " << d1 << std::endl;
std::cout << "   * After NCA:  " << d2 << std::endl;
std::cout << std::endl;

// Point 3 has a different label.  We therefore expect this point to get further
// from point 0 with the Manhattan distance, but not necessarily with the
// Euclidean distance.
const double d3 = mlpack::ManhattanDistance::Evaluate(
    dataset.col(0), dataset.col(3));
const double d4 = mlpack::ManhattanDistance::Evaluate(
    transformedDataset.col(0), transformedDataset.col(3));

std::cout << "Distance between points 0 and 3 (different class):" << std::endl;
std::cout << " - Manhattan distance:" << std::endl;
std::cout << "   * Before NCA: " << d3 << std::endl;
std::cout << "   * After NCA:  " << d4 << std::endl;

// Note that point 3 has been moved further away from point 0 than point 1.

Learn a distance metric while also performing dimensionality reduction, reducing the dimensionality of the vehicle dataset by 2 dimensions.

// See https://datasets.mlpack.org/vehicle.csv.
arma::mat dataset;
mlpack::data::Load("vehicle.csv", dataset, true);

// The labels are contained as the last row of the dataset.
arma::Row<size_t> labels =
    arma::conv_to<arma::Row<size_t>>::from(dataset.row(dataset.n_rows - 1));
dataset.shed_row(dataset.n_rows - 1);

// Because typical distances between points in the vehicle dataset are large,
// we will center the dataset and scale it to have points in the unit ball.
// (That is, all points will have values in each dimension between -1 and 1.)
// This means that the maximum pairwise distance is 2.
dataset.each_col() -= arma::mean(dataset, 1);
dataset /= arma::max(arma::max(arma::abs(dataset)));

// Use a random initialization for the distance transformation, with the
// specified output dimensionality.
arma::mat distance(dataset.n_rows - 2, dataset.n_rows, arma::fill::randu);
mlpack::NCA nca;
ens::L_BFGS opt;
opt.MaxIterations() = 10; // You may want more in a real application.
nca.LearnDistance(dataset, labels, distance, opt);

// Now transform the dataset.
arma::mat transformedData = distance * dataset;

std::cout << std::endl << std::endl;
std::cout << "Original data has size " << dataset.n_rows << " x "
    << dataset.n_cols << "." << std::endl;
std::cout << "Transformed data has size " << transformedData.n_rows << " x "
    << transformedData.n_cols << "." << std::endl;